241 research outputs found

    The inevitable QSAR renaissance

    Get PDF
    QSAR approaches, including recent advances in 3D-QSAR, are advantageous during the lead optimization phase of drug discovery and complementary with bioinformatics and growing data accessibility. Hints for future QSAR practitioners are also offered

    Risk factors for acute chemical releases with public health consequences: Hazardous Substances Emergency Events Surveillance in the U.S., 1996–2001

    Get PDF
    BACKGROUND: Releases of hazardous materials can cause substantial morbidity and mortality. To reduce and prevent the public health consequences (victims or evacuations) from uncontrolled or illegally released hazardous substances, a more comprehensive analysis is needed to determine risk factors for hazardous materials incidents. METHODS: Hazardous Substances Emergency Events Surveillance (HSEES) data from 1996 through 2001 were analyzed using bivariate and multiple logistic regression. Fixed-facility and transportation-related events were analyzed separately. RESULTS: For fixed-facility events, 2,327 (8%) resulted in at least one victim and 2,844 (10%) involved ordered evacuations. For transportation-related events, 759 (8%) resulted in at least one victim, and 405 (4%) caused evacuation orders. Fire and/or explosion were the strongest risk factors for events involving either victims or evacuations. Stratified analysis of fixed-facility events involving victims showed a strong association for acid releases in the agriculture, forestry, and fisheries industry. Chlorine releases in fixed-facility events resulted in victims and evacuations in more industry categories than any other substance. CONCLUSIONS: Outreach efforts should focus on preventing and preparing for fires and explosions, acid releases in the agricultural industry, and chlorine releases in fixed facilities

    The Origin of Minus-end Directionality and Mechanochemistry of Ncd Motors

    Get PDF
    Adaptation of molecular structure to the ligand chemistry and interaction with the cytoskeletal filament are key to understanding the mechanochemistry of molecular motors. Despite the striking structural similarity with kinesin-1, which moves towards plus-end, Ncd motors exhibit minus-end directionality on microtubules (MTs). Here, by employing a structure-based model of protein folding, we show that a simple repositioning of the neck-helix makes the dynamics of Ncd non-processive and minus-end directed as opposed to kinesin-1. Our computational model shows that Ncd in solution can have both symmetric and asymmetric conformations with disparate ADP binding affinity, also revealing that there is a strong correlation between distortion of motor head and decrease in ADP binding affinity in the asymmetric state. The nucleotide (NT) free-ADP (?-ADP) state bound to MTs favors the symmetric conformation whose coiled-coil stalk points to the plus-end. Upon ATP binding, an enhanced flexibility near the head-neck junction region, which we have identified as the important structural element for directional motility, leads to reorienting the coiled-coil stalk towards the minus-end by stabilizing the asymmetric conformation. The minus-end directionality of the Ncd motor is a remarkable example that demonstrates how motor proteins in the kinesin superfamily diversify their functions by simply rearranging the structural elements peripheral to the catalytic motor head domain

    Atomic parity violation in a single trapped radium ion

    Get PDF
    Atomic parity violation (APV) experiments are sensitive probes of the electroweak interaction at low energy. These experiments are competitive with and complementary to high-energy collider experiments. The APV signal is strongly enhanced in heavy atoms and it is measurable by exciting suppressed (M1, E2) transitions. The status of APV experiments and theory are reviewed as well as the prospects of an APV experiment using one single trapped Ra+ ion. The predicted enhancement factor of the APV effect in Ra+ is about 50 times larger than in Cs atoms. However, certain spectroscopic information on Ra+ needed to constrain the required atomic many-body theory, was lacking. Using the AGOR cyclotron and the TRIμP facility at KVI in Groningen, short-lived 212 - 214Ra+ ions were produced and trapped. First ever excited-state laser spectroscopy was performed on the trapped ions. These measurements provide a benchmark for the atomic theory required to extract the electroweak mixing angle to sub-1% accuracy and are an important step towards an APV experiment in a single trapped Ra+ ion

    The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    Get PDF
    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles

    Phase II study of concurrent chemoradiotherapy with capecitabine and cisplatin in patients with locally advanced squamous cell carcinoma of the head and neck

    Get PDF
    We aimed to evaluate the efficacy and safety of concurrent chemoradiotherapy with capecitabine and cisplatin in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). In total, 37 patients with stage III or IV SCCHN were enrolled on the study. The chemotherapy consisted of two cycles of intravenous cisplatin of 80 mg m−2 on day 1 and oral capecitabine 825 mg m−2 twice daily from day 1 to day 14 at 3-week intervals. The radiotherapy (1.8–2.0 Gy 1 fraction day−1 to a total dose of 70–70.2 Gy) was delivered to the primary tumour site and neck. The primary tumour sites were as follows: oral cavity (n=6), oropharynx (n=11), hypopharynx (n=8), larynx (n=3), nasopharynx (n=6), and paranasal sinus (n=3). After the chemoradiotherapy, 29 complete responses (78.4%) and 6 partial responses (16.2%) were confirmed. Grade 3 or 4 neutropenia occurred only in two patients, plus grade 3 febrile neutropenia was observed only in one patient. At a median follow-up duration of 19.8 months, the estimated overall survival and progression-free survival rate at 2-year was 76.8 and 57.9%, respectively. Concurrent chemoradiotherapy with capecitabine and cisplatin was found to be well tolerated and effective in patients with locally advanced SCCHN

    Mediator and cohesin connect gene expression and chromatin architecture

    Get PDF
    Transcription factors control cell-specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. Here we report that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with cohesin, which can form rings that connect two DNA segments. The cohesin-loading factor Nipbl is associated with mediator–cohesin complexes, providing a means to load cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by mediator and cohesin. Mediator and cohesin co-occupy different promoters in different cells, thus generating cell-type-specific DNA loops linked to the gene expression program of each cell.National Institutes of Health (U.S.) (Fellowship)Canadian Institutes of Health Research (Research Fellowship)National Institutes of Health (U.S.) (Grant R01 HG002668
    corecore