131 research outputs found

    Visuo-spatial ability in colonoscopy simulator training

    Get PDF
    Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques

    Cardiac Glycosides Ouabain and Digoxin Interfere with the Regulation of Glutamate Transporter GLAST in Astrocytes Cultured from Neonatal Rat Brain

    Get PDF
    Glutamate transport (GluT) in brain is mediated chiefly by two transporters GLT and GLAST, both driven by ionic gradients generated by (Na+, K+)-dependent ATPase (Na+/K+-ATPase). GLAST is located in astrocytes and its function is regulated by translocations from cytoplasm to plasma membrane in the presence of GluT substrates. The phenomenon is blocked by a naturally occurring toxin rottlerin. We have recently suggested that rottlerin acts by inhibiting Na+/K+-ATPase. We now report that Na+/K+-ATPase inhibitors digoxin and ouabain also blocked the redistribution of GLAST in cultured astrocytes, however, neither of the compounds caused detectable inhibition of ATPase activity in cell-free astrocyte homogenates (rottlerin inhibited app. 80% of Pi production from ATP in the astrocyte homogenates, IC50 = 25 μM). Therefore, while we may not have established a direct link between GLAST regulation and Na+/K+-ATPase activity we have shown that both ouabain and digoxin can interfere with GluT transport and therefore should be considered potentially neurotoxic

    Application of the health assessment questionnaire disability index to various rheumatic diseases

    Get PDF
    Purpose\ud \ud To investigate whether the Stanford Health Assessment Questionnaire Disability Index (HAQ-DI) can serve as a generic instrument for measuring disability across different rheumatic diseases and to propose a scoring method based on item response theory (IRT) modeling to support this goal.\ud \ud Methods\ud \ud The HAQ-DI was administered to a cross-sectional sample of patients with confirmed rheumatoid arthritis (n = 619), osteoarthritis (n = 125), or gout (n = 102). The results were analyzed using the generalized partial credit model as an IRT model.\ud \ud Results\ud \ud It was found that 4 out of 8 item categories of the HAQ-DI displayed substantial differential item functioning (DIF) over the three diseases. Further, it was shown that this DIF could be modeled using an IRT model with disease-specific item parameters, which produces measures that are comparable for the three diseases.\ud \ud Conclusion\ud \ud Although the HAQ-DI partially functioned differently in the three disease groups, the measurement regarding the disability level of the patients can be made comparable using IRT methods\u

    On the sources of the height–intelligence correlation: New insights from a bivariate ACE model with assortative mating

    Get PDF
    A robust positive correlation between height and intelligence, as measured by IQ tests, has been established in the literature. This paper makes several contributions toward establishing the causes of this association. First, we extend the standard bivariate ACE model to account for assortative mating. The more general theoretical framework provides several key insights, including formulas to decompose a cross-trait genetic correlation into components attributable to assortative mating and pleiotropy and to decompose a cross-trait within-family correlation. Second, we use a large dataset of male twins drawn from Swedish conscription records and examine how well genetic and environmental factors explain the association between (i) height and intelligence and (ii) height and military aptitude, a professional psychogologist’s assessment of a conscript’s ability to deal with wartime stress. For both traits, we find suggestive evidence of a shared genetic architecture with height, but we demonstrate that point estimates are very sensitive to assumed degrees of assortative mating. Third, we report a significant within-family correlation between height and intelligence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(ρ^=0.10),(\hat{\rho}=0.10),\end{document} suggesting that pleiotropy might be at play

    Double blind randomized placebo-controlled trial on the effects of testosterone supplementation in elderly men with moderate to low testosterone levels: design and baseline characteristics [ISRCTN23688581]

    Get PDF
    In ageing men testosterone levels decline, while cognitive function, muscle and bone mass, sexual hair growth, libido and sexual activity decline and the risk of cardiovascular diseases increase. We set up a double-blind, randomized placebo-controlled trial to investigate the effects of testosterone supplementation on functional mobility, quality of life, body composition, cognitive function, vascular function and risk factors, and bone mineral density in older hypogonadal men. We recruited 237 men with serum testosterone levels below 13.7 nmol/L and ages 60–80 years. They were randomized to either four capsules of 40 mg testosterone undecanoate (TU) or placebo daily for 26 weeks. Primary endpoints are functional mobility and quality of life. Secondary endpoints are body composition, cognitive function, aortic stiffness and cardiovascular risk factors and bone mineral density. Effects on prostate, liver and hematological parameters will be studied with respect to safety. Measure of effect will be the difference in change from baseline visit to final visit between TU and placebo. We will study whether the effect of TU differs across subgroups of baseline waist girth (< 100 cm vs. ≥ 100 cm; testosterone level (<12 versus ≥ 12 nmol/L), age (< median versus ≥ median), and level of outcome under study (< median versus ≥ median). At baseline, mean age, BMI and testosterone levels were 67 years, 27 kg/m(2 )and 10.72 nmol/L, respectively

    Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC). Genetic studies in zebrafish and mice have established that the Hedgehog (Hh)-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE), which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp>. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA) skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1) for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study <it>chameleon </it>mutants, lacking a functional <it>disp1</it>(<it>con/disp1</it>).</p> <p>Results</p> <p><it>con/disp1 </it>mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in <it>con/disp1 </it>mutants, however <it>disp1 </it>is necessary for post-migratory CNCC patterning and differentiation. We show that <it>disp1 </it>is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, <it>sox9a </it>and <it>dlx2a</it>, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to inhibit Hh-signaling at different developmental stages, show that Hh-signaling is required during gastrulation for normal patterning of CNCC in the first PA, and then during the late pharyngula stage, to promote CNCC chondrogenesis within the posterior arches. Further, loss of <it>disp1 </it>disrupted normal expression of <it>bapx1 </it>and <it>gdf5</it>, markers of jaw joint patterning, thus resulting in jaw joint defects in <it>con/disp1 </it>mutant animals.</p> <p>Conclusion</p> <p>This study reveals novel requirements for Hh-signaling in the zebrafish PA skeleton and highlights the functional diversity and differential sensitivity of craniofacial tissues to Hh-signaling throughout the face, a finding that may help to explain the spectrum of human facial phenotypes characteristic of HPE.</p

    Membranes with the Same Ion Channel Populations but Different Excitabilities

    Get PDF
    Electrical signaling allows communication within and between different tissues and is necessary for the survival of multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as widely used in the literature in spite of being more realistic and capable of displaying experimentally observable phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels, one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical ion channel populations are different, potentially causing the input-output and computational properties of networks constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical improvement over conductance-based models that may lead to more accurate predictions and interpretations of experimental data at the single cell and network levels

    CONNECT for quality: protocol of a cluster randomized controlled trial to improve fall prevention in nursing homes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quality improvement (QI) programs focused on mastery of content by individual staff members are the current standard to improve resident outcomes in nursing homes. However, complexity science suggests that learning is a social process that occurs within the context of relationships and interactions among individuals. Thus, QI programs will not result in optimal changes in staff behavior unless the context for social learning is present. Accordingly, we developed CONNECT, an intervention to foster systematic use of management practices, which we propose will enhance effectiveness of a nursing home Falls QI program by strengthening the staff-to-staff interactions necessary for clinical problem-solving about complex problems such as falls. The study aims are to compare the impact of the CONNECT intervention, plus a falls reduction QI intervention (CONNECT + FALLS), to the falls reduction QI intervention alone (FALLS), on fall-related process measures, fall rates, and staff interaction measures.</p> <p>Methods/design</p> <p>Sixteen nursing homes will be randomized to one of two study arms, CONNECT + FALLS or FALLS alone. Subjects (staff and residents) are clustered within nursing homes because the intervention addresses social processes and thus must be delivered within the social context, rather than to individuals. Nursing homes randomized to CONNECT + FALLS will receive three months of CONNECT first, followed by three months of FALLS. Nursing homes randomized to FALLS alone receive three months of FALLs QI and are offered CONNECT after data collection is completed. Complexity science measures, which reflect staff perceptions of communication, safety climate, and care quality, will be collected from staff at baseline, three months after, and six months after baseline to evaluate immediate and sustained impacts. FALLS measures including quality indicators (process measures) and fall rates will be collected for the six months prior to baseline and the six months after the end of the intervention. Analysis will use a three-level mixed model.</p> <p>Discussion</p> <p>By focusing on improving local interactions, CONNECT is expected to maximize staff's ability to implement content learned in a falls QI program and integrate it into knowledge and action. Our previous pilot work shows that CONNECT is feasible, acceptable and appropriate.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00636675">NCT00636675</a></p
    corecore