48 research outputs found

    Novel application of low pH-dependent fluorescent dyes to examine colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoscopy capable of fluorescence observation provides histological information on gastrointestinal lesions. We explored the novel application of low pH-dependent fluorescent dyes for fluorescence observation of crypt structure and inflammatory cell infiltration in the colon.</p> <p>Methods</p> <p>Low pH-dependent fluorescent dyes were applied to the colonic mucosa of normal mice for observation under fluorescence stereomicroscopy system. We also examined mouse models of colitis, which were induced by trinitrobenzenesulfonic acid, dextran sulfate sodium or interleukin-10 deficiency.</p> <p>Results</p> <p>Topical application of low pH-dependent fluorescent dyes revealed crypts as ring-shaped fluorescent stains by visualizing the mucin granules of goblet cells. Because of the minimal fluorescence intensity of the low pH-dependent fluorescent dyes in phosphate-buffered saline, it was not necessary to wash the mucosa before the fluorescence observation. 4-Nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was quicker to achieve complete staining (three minutes) than LysoSensor Green DND-153 and DND-189 (20 minutes). In each type of colitis, NBD-PZ revealed the destruction of the crypts as the disappearance of the ring-shaped fluorescent stains and the infiltration of inflammatory cells as the aggregation of punctate fluorescent stains through visualization of lysosomes.</p> <p>Conclusions</p> <p>Low pH-dependent fluorescent dyes, especially NBD-PZ, are suitable for topical application to the colonic mucosa and have characteristics that allow for the histological examination of colitis.</p

    Bio-physical characteristics of gastrointestinal mucosa of celiac patients: comparison with control subjects and effect of gluten free diet-

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intestinal mucosa is leaky in celiac disease (CD), and this alteration may involve changes in hydrophobicity of the mucus surface barrier in addition to alteration of the epithelial barrier. The aims of our study were i) to compare duodenal hydrophobicity as an index of mucus barrier integrity in CD patients studied before (n = 38) and during gluten- free diet (GFD, n = 68), and in control subjects (n = 90), and ii) to check for regional differences of hydrophobicity in the gastro-intestinal tract.</p> <p>Methods</p> <p>Hydrophobicity was assessed by measurement of contact angle (CA) (Rame Hart 100/10 goniometer) generated by a drop of water placed on intestinal mucosal biopsies.</p> <p>Results</p> <p>CA (mean Β± SD) of distal duodenum was significantly lower in CD patients (56Β° Β± 10Β°)) than in control subjects (69Β° Β± 9Β°, p < 0.0001), and persisted abnormal in patients studied during gluten free diet (56Β° Β± 9Β°; p < 0.005). CA was significantly higher (62Β° Β± 9Β°) in histologically normal duodenal biopsies than in biopsies with Marsh 1-2 (58Β° Β± 10Β°; p < 0.02) and Marsh 3 lesions (57Β° Β± 10Β°; p < 0.02) in pooled results of all patients and controls studied. The order of hydrofobicity along the gastrointestinal tract in control subjects follows the pattern: gastric antrum > corpus > rectum > duodenum > oesophagus > ileum.</p> <p>Conclusions</p> <p>We conclude that the hydrophobicity of duodenal mucous layer is reduced in CD patients, and that the resulting decreased capacity to repel luminal contents may contribute to the increased intestinal permeability of CD. This alteration mirrors the severity of the mucosal lesions and is not completely reverted by gluten-free diet. Intestinal hydrophobicity exhibits regional differences in the human intestinal tract.</p

    Mucin impedes cytotoxic effect of 5-FU against growth of human pancreatic cancer cells: overcoming cellular barriers for therapeutic gain

    Get PDF
    Mucins are high molecular weight glycoproteins expressed on the apical surface of normal epithelial cells. In cancer disease mucins are overexpressed on the entire cellular surface. Overexpression of MUC1 mucin in pancreatic tumours has been correlated with poor patient survival. Current chemotherapeutic approaches such as 5-fluorouracil (5-FU) has produced limited clinical success. In this study we investigated the role of mucin in cytotoxic drug treatment to determine whether the extracellular domain of mucin impedes cytotoxic drug action of 5-FU. Human pancreatic cancer cells revealed high and relatively moderate MUC1 levels for Capan-1 and HPAF-II, respectively, compared to MUC1 negative control (U-87 MG glioblastoma) that showed relatively non-specific anti-MUC1 uptake. Benzyl-Ξ±-GalNAc (O-glycosylation inhibitor) was used to reduce mucin on cell surfaces, and neuraminidase was used to hydrolyse sialic acid at the distal end of carbohydrate chains. Benzyl-Ξ±-GalNAc had no effect on cell morphology or proliferation at the concentrations employed. The inhibition of O-glycosylation resulted in significant 5-FU antiproliferative activity against Capan-1 and HPAF-II, but not against U-87 MG. However, the exposure of cells to neuraminidase failed to improve the cytotoxic action of 5-FU. Our experimental findings suggest that the overexpression of mucin produced by human pancreatic tumours might limit the effectiveness of chemotherapy

    Natural history of SLC11 genes in vertebrates: tales from the fish world

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>SLC11A1/Nramp1 </it>and <it>SLC11A2/Nramp2 </it>genes belong to the <it>SLC11/Nramp </it>family of transmembrane divalent metal transporters, with <it>SLC11A1 </it>being associated with resistance to pathogens and <it>SLC11A2 </it>involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the <it>SLC11 </it>gene family have been clearly identified in tetrapods; however <it>SLC11A1 </it>has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the <it>SLC11 </it>genes in teleosts and evaluated if the roles attributed to mammalian <it>SLC11 </it>genes are assured by other fish specific <it>SLC11 </it>gene members.</p> <p>Results</p> <p>Two different <it>SLC11 </it>genes were isolated in the European sea bass (<it>Dicentrarchus. labrax</it>), and named <it>slc11a2-Ξ± </it>and <it>slc11a2-Ξ²</it>, since both were found to be evolutionary closer to tetrapods <it>SLC11A2</it>, through phylogenetic analysis and comparative genomics. Induction of <it>slc11a2-Ξ± </it>and <it>slc11a2-Ξ² </it>in sea bass, upon iron modulation or exposure to <it>Photobacterium damselae </it>spp. <it>piscicida</it>, was evaluated in <it>in vivo </it>or <it>in vitro </it>experimental models. Overall, <it>slc11a2-Ξ± </it>was found to respond only to iron deficiency in the intestine, whereas <it>slc11a2-Ξ² </it>was found to respond to iron overload and bacterial infection in several tissues and also in the leukocytes.</p> <p>Conclusions</p> <p>Our data suggests that despite the absence of <it>slc11a1</it>, its functions have been undertaken by one of the <it>slc11a2 </it>duplicated paralogs in teleost fish in a case of synfunctionalization, being involved in both iron metabolism and response to bacterial infection. This study provides, to our knowledge, the first example of this type of sub-functionalization in iron metabolism genes, illustrating how conserving the various functions of the SLC11 gene family is of crucial evolutionary importance.</p

    Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

    Get PDF
    Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2βˆ’/βˆ’) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2βˆ’/βˆ’ mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2βˆ’/βˆ’ vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2βˆ’/βˆ’ mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2βˆ’/βˆ’ vs. WT mice, with overt pathogen and commensal translocation into the Muc2βˆ’/βˆ’ colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2βˆ’/βˆ’ mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium
    corecore