56 research outputs found

    Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    Get PDF
    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than classical computers.Comment: 11 pages, 13 figure

    Testing for hereditary thrombophilia: a retrospective analysis of testing referred to a national laboratory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predisposition to venous thrombosis may be assessed through testing for defects and/or deficiencies of a number of hereditary factors. There is potential for confusion about which of these tests are appropriate in which settings. At least one set of recommendations has been published to guide such testing, but it is unclear how widely these have been disseminated.</p> <p>Methods</p> <p>We performed a retrospective analysis of laboratory orders and results at a national referral laboratory to gain insight into physicians' ordering practices, specifically comparing them against the ordering practices recommended by a 2002 College of American Pathologists (CAP) consensus conference on thrombophilia testing. Measurements included absolute and relative ordering volumes and positivity rates from approximately 200,000 thrombophilia tests performed from September 2005 through August 2006 at a national reference laboratory. Quality control data were used to estimate the proportion of samples that may have been affected by anticoagulant therapy. A sample of ordering laboratories was surveyed in order to assess potential measurement bias.</p> <p>Results</p> <p>Total antigen assays for protein C, protein S and antithrombin were ordered almost as frequently as functional assays for these analytes. The DNA test for factor V Leiden was ordered much more often than the corresponding functional assay. In addition, relative positivity rates coupled with elevations in prothrombin time (PT) in many of these patients suggest that these tests are often ordered in the setting of oral anticoagulant therapy.</p> <p>Conclusion</p> <p>In this real-world setting, testing for inherited thrombophilia is frequently at odds with the recommendations of the CAP consensus conference. There is a need for wider dissemination of concise thrombophilia testing guidelines.</p

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Computing: Quantum to classical and back

    No full text
    Quantum mechanics can simulate a classical system evolving in (and towards) thermal equilibrium. This finding adds a further ingredient to the story of what problems a computer — classical or quantum — could possibly master. Introductio
    • 

    corecore