19 research outputs found

    Some size relationships in phytoflagellate motility

    Get PDF
    Data from the literature are used to assess some hypothesised adaptive advantages of the flagellate life form among phytoplankton. Possible advantages include increased nutrient uptake by movement through a homogeneous medium as opposed to exploitation of spatial hetrogeneity of the environment. Maximal migrational amplitudes and maximal swimming velocities of phytoflagellates were compared to body size. Both were found to increase with size. Relative amplitudes and relative velocities, however, were found to decrease with size. Hydrophysical considerations show that additional gain of nutrients by swimming through a homogeneous medium is only minimal for small flagellates at their attainable swimming velocities. It is suggested that exploitation of environmental heterogeneity in nutrient distribution may be one of the most important advantages for flagellates over coccoid algae

    Morphological analysis of the sheathed flagellum of Brucella melitensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It was recently shown that <it>B. melitensis </it>is flagellated. However, the flagellar structure remains poorly described.</p> <p>Findings</p> <p>We analyzed the structure of the polar sheathed flagellum of <it>B. melitensis </it>by TEM analysis and demonstrated that the Ryu staining is a good method to quickly visualize the flagellum by optical microscopy. The TEM analysis demonstrated that an extension of the outer membrane surrounds a filament ending by a club-like structure. The Δ<it>ftcR</it>, Δ<it>fliF</it>, Δ<it>flgE </it>and Δ<it>fliC </it>flagellar mutants still produce an empty sheath.</p> <p>Conclusions</p> <p>Our results demonstrate that the flagellum of <it>B. melitensis </it>has the characteristics of the sheathed flagella. Our results also suggest that the flagellar sheath production is not directly linked to the flagellar structure assembly and is not regulated by the FtcR master regulator.</p

    Grazing-activated chemical defence in a unicellular marine alga

    No full text
    Marine plankton use a variety of defences against predators, some of which affect trophic structure and biogeochemistry. We have previously shown that, during grazing by the protozoan Oxyrrhis marina on the alga Emiliania huxleyi, dimethylsulphoniopropionate (DMSP) from the prey is converted to dimethyl sulphide (DMS) when lysis of ingested prey cells initiates mixing of algal DMSP and the enzyme DMSP lyase. Such a mechanism is similar to macrophyte defence reactions. Here we show that this reaction deters protozoan herbivores, presumably through the production of highly concentrated acrylate, which has antimicrobial activity. Protozoan predators differ in their ability to ingest and survive on prey with high-activity DMSP lyase, but all grazers preferentially select strains with low enzyme activity when offered prey mixtures. This defence system involves investment in a chemical precursor, DMSP, which is not self-toxic and has other useful metabolic functions. We believe this the first report of grazing-activated chemical defence in unicellular microorganisms

    Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton

    No full text
    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility toward the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant
    corecore