92 research outputs found

    Defining Medical Futility and Improving Medical Care

    Get PDF
    It probably should not be surprising, in this time of soaring medical costs and proliferating technology, that an intense debate has arisen over the concept of medical futility. Should doctors be doing all the things they are doing? In particular, should they be attempting treatments that have little likelihood of achieving the goals of medicine? What are the goals of medicine? Can we agree when medical treatment fails to achieve such goals? What should the physician do and not do under such circumstances? Exploring these issues has forced us to revisit the doctor-patient relationship and the relationship of the medical profession to society in a most fundamental way. Medical futility has both a quantitative and qualitative component. I maintain that medical futility is the unacceptable likelihood of achieving an effect that the patient has the capacity to appreciate as a benefit. Both emphasized terms are important. A patient is neither a collection of organs nor merely an individual with desires. Rather, a patient (from the word “to suffer”) is a person who seeks the healing (meaning “to make whole”) powers of the physician. The relationship between the two is central to the healing process and the goals of medicine. Medicine today has the capacity to achieve a multitude of effects, raising and lowering blood pressure, speeding, slowing, and even removing and replacing the heart, to name but a minuscule few. But none of these effects is a benefit unless the patient has at the very least the capacity to appreciate it. Sadly, in the futility debate wherein some critics have failed or refused to define medical futility an important area of medicine has in large part been neglected, not only in treatment decisions at the bedside, but in public discussions—comfort care—the physician’s obligation to alleviate suffering, enhance well being and support the dignity of the patient in the last few days of life

    A System Dynamics Approach for Modeling Return on Quality for ECS Industry

    Get PDF
    The Electronic Components and Systems industry (ECS) is characterized by long lead times and high market volatility. Besides fast technological development within this industry, cyclic market up- and downturns are influencing the semiconductor market. Therefore, adequate capacity and inventory management as well as continuous process improvements are important success factors for semiconductor companies to be competitive. In this study, the authors focus on a manufacturing excellence approach to increase front-end supply reliability and the availability of inventory within the customer order decoupling point. Here, development and manufacturing processes must be designed in a way that highest levels of product quality, flexibility, time and costs are reached. The purpose of this study is to explore the impact of return on quality in manufacturing systems. Therefore, multimethod simulation modelling including discrete-event and system dynamics simulation is applied

    Moral Distress Amongst American Physician Trainees Regarding Futile Treatments at the End of Life: A Qualitative Study.

    Get PDF
    BACKGROUND: Ethical challenges are common in end of life care; the uncertainty of prognosis and the ethically permissible boundaries of treatment create confusion and conflict about the balance between benefits and burdens experienced by patients. OBJECTIVE: We asked physician trainees in internal medicine how they reacted and responded to ethical challenges arising in the context of perceived futile treatments at the end of life and how these challenges contribute to moral distress. DESIGN: Semi-structured in-depth qualitative interviews. PARTICIPANTS: Twenty-two internal medicine residents and fellows across three American academic medical centers. APPROACH: This study uses systematic qualitative methods of data gathering, analysis and interpretation. KEY RESULTS: Physician trainees experienced significant moral distress when they felt obligated to provide treatments at or near the end of life that they believed to be futile. Some trainees developed detached and dehumanizing attitudes towards patients as a coping mechanism, which may contribute to a loss of empathy. Successful coping strategies included formal and informal conversations with colleagues and superiors about the emotional and ethical challenges of providing care at the end of life. CONCLUSIONS: Moral distress amongst physician trainees may occur when they feel obligated to provide treatments at the end of life that they believe to be futile or harmful.This study was funded by the Health Resources and Service Administration T32 HP10025-20 Training Grant, the Gates Cambridge Scholarship, Society of General Internal Medicine Founders Grant, and the Ho-Chiang Palliative Care Research Fellowship at the Johns Hopkins School of Medicine.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s11606-015-3505-

    Prenatal Diagnosis of Oculocutaneous Albinism by Electron Microscopy of Fetal Skin

    Get PDF
    Oculocutaneous albinism was diagnosed prenatally by electron microscopic examination of fetal skin samples taken during fetoscopy at 20 weeks of gestation. Melanosome development in hair bulb melanocytes progressed no further than stage II, indicating a lack of melanin synthesis. In 4 age-matched control fetuses, numerous stage IV melanosomes, signifying active melanin synthesis, were identified. The diagnosis was confirmed after the pregnancy was terminated at 22 weeks. Examination of the fetal eye showed absence of pigment in the retinal epithelium and uvea at a stage when ocular melanogenesis would normally be active. This study shows that oculocutaneous albinism can be detected in the second trimester using similar techniques to those employed in the prenatal diagnosis of epidermolysis bullosa and ichthyosis

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    Interaction between Purkinje Cells and Inhibitory Interneurons May Create Adjustable Output Waveforms to Generate Timed Cerebellar Output

    Get PDF
    We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning
    corecore