129 research outputs found
Is blue dye still required during sentinel lymph node biopsy for breast cancer?
BACKGROUND:
In early breast cancer, the optimal technique for sentinel lymph node biopsy (SLNB) is the combined technique (radioisotope and Patent Blue V) which achieves high identification rates. Despite this, many centres have decided to stop using blue dye due to blue-dye-related complications (tattoo, anaphylaxis). We evaluated the SLNB identification rate using the combined technique with and without Patent Blue V and the blue-dye-related complication rates.
METHODS:
Clinical and histological data were analysed on patients undergoing SLNB between March 2014 and April 2015. SLNB was performed following standard hospital protocols using the combined technique.
RESULTS:
A total of 208 patients underwent SLNB and 160 patients (342 nodes) with complete operation notes were available for final analysis. The identification rate with the combined technique was 98.8% (n = 158/160), with blue dye alone 92.5% (n = 148/160) and with radioisotope alone 97.5% (n = 156/160). A total of 76.9% (263/342) of nodes were radioactive and blue, 15.5% (53/342) only radioactive and 2.3% (8/342) only blue, 5.3% (18/342) were neither radioactive nor blue. No anaphylactic reactions were reported and blue skin staining was reported in six (3.8%) patients.
CONCLUSION:
The combined technique should continue be the preferred technique for SLNB and should be standardised. Radioisotope alone (but not blue dye alone) has comparable sentinel node identification rates in experienced hands. National guidelines are required to optimise operative documentation
Optimization of SPIO injection for sentinel lymph node dissection in a rat model
The magnetic technique, consisting of a magnetic tracer and a handheld magnetometer, is a promising alternative technique for sentinel lymph node dissection (SLND) and was shown to be non-inferior to the standard technique in terms of identification rates. In this study, injection characteristics (iron dose, dilution, time course and massaging) were evaluated to optimize magnetic tracer uptake in the sentinel lymph nodes (SLN) in a rat hindleg model. 202 successful SLNDs were performed. Iron uptake in the SLN is proportional (10% utilization rate) to the injection dose between 20 and 200 μg, showing a plateau uptake of 80 μg in the SLN around 1,000 μg injection. Linear regression showed that time had a higher impact than dilution, on the SLN iron uptake. Massaging showed no significant change in iron uptake. The amount of residual iron at the injection site was also proportional to the injection dose without any plateau. Time was a significant factor for wash-out of residual iron. From these results, preoperative injection may be advantageous for SLN detection as well as reduction in residual iron at the injection site by potential decrease in required injection dose
Helicobacter pylori Counteracts the Apoptotic Action of Its VacA Toxin by Injecting the CagA Protein into Gastric Epithelial Cells
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host
Use of cancer-specific yeast-secreted in vivo biotinylated recombinant antibodies for serum biomarker discovery
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Prenatal Diagnosis of Oculocutaneous Albinism by Electron Microscopy of Fetal Skin
Oculocutaneous albinism was diagnosed prenatally by electron microscopic examination of fetal skin samples taken during fetoscopy at 20 weeks of gestation. Melanosome development in hair bulb melanocytes progressed no further than stage II, indicating a lack of melanin synthesis. In 4 age-matched control fetuses, numerous stage IV melanosomes, signifying active melanin synthesis, were identified. The diagnosis was confirmed after the pregnancy was terminated at 22 weeks. Examination of the fetal eye showed absence of pigment in the retinal epithelium and uvea at a stage when ocular melanogenesis would normally be active. This study shows that oculocutaneous albinism can be detected in the second trimester using similar techniques to those employed in the prenatal diagnosis of epidermolysis bullosa and ichthyosis
The equilibria that allow bacterial persistence in human hosts
We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62883/1/nature06198.pd
Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche
Proteomic and Physiological Responses of Kineococcus radiotolerans to Copper
Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0–1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration
Extracorporeal Membrane Oxygenation for Acute Pediatric Respiratory Failure
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The use of extracorporeal membrane oxygenation (ECMO) to support children with acute respiratory failure has steadily increased over the past several decades, with major advancements having been made in the care of these children. There are, however, many controversies regarding indications for initiating ECMO in this setting and the appropriate management strategies thereafter. Broad indications for ECMO include hypoxia, hypercarbia, and severe air leak syndrome, with hypoxia being the most common. There are many disease-specific considerations when evaluating children for ECMO, but there are currently very few, if any, absolute contraindications. Venovenous rather than veno-arterial ECMO cannulation is the preferred configuration for ECMO support of acute respiratory failure due to its superior side-effect profile. The approach to lung management on ECMO is variable and should be individualized to the patient, with the main goal of reducing the risk of VILI. ECMO is a relatively rare intervention, and there are likely a minimum number of cases per year at a given center to maintain competency. Patients who have prolonged ECMO runs (i.e., greater than 21 days) are less likely to survive, though no absolute duration of ECMO that would mandate withdrawal of ECMO support can be currently recommended
- …