17 research outputs found

    Dry matter losses and methane emissions during wood chip storage: the impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat

    Get PDF
    A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and combustion. The relative impacts of dry matter losses and methane emissions from chip storage were examined from a LCA perspective, comparing the GHG emissions from the SRC supply chain with those of natural gas for heat generation. The results show that SRC generally provides very high GHG emission savings of over 90 %. The LCA model estimates that a 1, 10 and 20 % loss of dry matter during storage causes a 1, 6 and 11 % increase in GHG emissions per MWh. The GHG emission results are extremely sensitive to emissions of methane from the wood chip stack: If 1 % of the carbon within the stack undergoes anaerobic decomposition to methane, then the GHG emissions per MWh are tripled. There are some uncertainties in the LCA results, regarding the true formation of methane in wood chip stacks, non-CO2 emissions from combustion, N2O emissions from leaf fall and the extent of carbon sequestered under the crop, and these all contribute a large proportion of the life cycle GHG emissions from cultivation of the cro

    The impact of 36 years of grazing management on soil nitrogen (N) supply rate and Salix repens N status and internal cycling in dune slacks

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11104-015-2628-9Aims: To determine the impact of long-term rabbit and sheep grazing on Salix repens N status (green and abscised leaf N content and C:N ratio), internal N dynamics and soil N supply rate in dune slacks. Methods: Herbivore exclosures were erected in dune slacks at Ainsdale Sand Dunes NNR, creating three grazing treatments: rabbit grazing; rabbits excluded for 36 years; rabbit grazing followed by sheep and rabbit grazing for 18 years. Soil N supply rate was analysed using ion exchange membranes; leaf N dynamics of S. repens were measured over one summer. Results: Soil N supply rate was higher in ungrazed plots. There was no difference in green leaf N<inf>MASS</inf> or C:N ratio between treatments, but N dynamics differed. Adding sheep to existing rabbit grazing reduced S. repens N resorption efficiency (R<inf>EFF</inf>) from 67 to 37 %; excluding rabbits had no impact. Litter N<inf>MASS</inf> was lower and C:N ratio higher in ungrazed plots. Conclusions: Grazing can impact significantly on leaf N resorption, but this impact depends on the grazing regime

    Leaf Litter Decomposition and Nutrient-Release Characteristics of Several Willow Varieties Within Short-Rotation Coppice Plantations in Saskatchewan, Canada

    No full text
    Quantifying short-rotation coppice (SRC) willow leaf litter dynamics will improve our understanding of carbon (C) sequestration and nutrient cycling potentials within these biomass energy plantations and provide valuable data for model validation. The objective of this study was to quantify the decomposition rate constants (kBiomass) and decomposition limit values (LVBiomass), along with associated release rates (kNutrient) and release limits (LVNutrient) of nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium (Ca), and magnesium (Mg) of leaf litter from several native and exotic willow varieties during an initial four-year rotation at four sites within Saskatchewan, Canada. The kBiomass, LVBiomass, kNutrient, and LVNutrient values varied among the willow varieties, sites, and nutrients, with average values of 1.7 year-1, 79 %, 0.9 year-1, and 83 %, respectively. Tissue N had the smallest kNutrient and LVNutrient values, while tissue K and Mg had the largest kNutrient and LVNutrient values, respectively. The leaf litter production varied among willow varieties and sites with an average biomass accumulation of 7.4 Mg ha-1 after the four-year rotation and associated C sequestration rate of 0.2 Mg C ha-1 yr-1. The average contribution of nutrients released from leaf litter decomposition during the four-year rotation to the plant available soil nutrient pool across varieties and sites was 22, 4, 47, 10, 112, and 18 kg ha-1 of N, P, K, S, Ca, and Mg, respectively. Principal component analysis identified numerous key relationships between the measured soil, plant tissue, climate and microclimate variables and observed willow leaf litter decomposition and nutrient release characteristics. Our findings support the contention that SRC willow leaf litter is capable of enhancing both soil organic C levels and supplementing soil nutrient availability over time
    corecore