27 research outputs found
The Transcription Factor SOX18 Regulates the Expression of Matrix Metalloproteinase 7 and Guidance Molecules in Human Endothelial Cells
Mutations in the transcription factor SOX18 are responsible for specific cardiovascular defects in humans and mice. In order to gain insight into the molecular basis of its action, we identified target genes of SOX18 and analyzed one, MMP7, in detail.SOX18 was expressed in HUVEC using a recombinant adenoviral vector and the altered gene expression profile was analyzed using microarrays. Expression of several regulated candidate SOX18 target genes was verified by real-time PCR. Knock-down of SOX18 using RNA interference was then used to confirm the effect of the transcription factor on selected genes that included the guidance molecules ephrin B2 and semaphorin 3G. One gene, MMP7, was chosen for further analysis, including detailed promoter studies using reporter gene assays, electrophoretic mobility shift analysis and chromatin-immunoprecipitation, revealing that it responds directly to SOX18. Immunohistochemical analysis demonstrated the co-expression of SOX18 and MMP7 in blood vessels of human skin.The identification of MMP7 as a direct SOX18 target gene as well as other potential candidates including guidance molecules provides a molecular basis for the proposed function of this transcription factor in the regulation of vessel formation
Induction of Blood Brain Barrier Tight Junction Protein Alterations by CD8 T Cells
Disruption of the blood brain barrier (BBB) is a hallmark feature of immune-mediated neurological disorders as diverse as viral hemorrhagic fevers, cerebral malaria and acute hemorrhagic leukoencephalitis. Although current models hypothesize that immune cells promote vascular permeability in human disease, the role CD8 T cells play in BBB breakdown remains poorly defined. Our laboratory has developed a novel murine model of CD8 T cell mediated central nervous system (CNS) vascular permeability using a variation of the Theiler's virus model of multiple sclerosis. In previous studies, we observed that MHC class II−/− (CD4 T cell deficient), IFN-γR−/−, TNF-α−/−, TNFR1−/−, TNFR2−/−, and TNFR1/TNFR2 double knockout mice as well as those with inhibition of IL-1 and LTβ activity were susceptible to CNS vascular permeability. Therefore, the objective of this study was to determine the extent immune effector proteins utilized by CD8 T cells, perforin and FasL, contributed to CNS vascular permeability. Using techniques such as fluorescent activated cell sorting (FACS), T1 gadolinium-enhanced magnetic resonance imaging (MRI), FITC-albumin leakage assays, microvessel isolation, western blotting and immunofluorescent microscopy, we show that in vivo stimulation of CNS infiltrating antigen-specific CD8 T cells initiates astrocyte activation, alteration of BBB tight junction proteins and increased CNS vascular permeability in a non-apoptotic manner. Using the aforementioned techniques, we found that despite having similar expansion of CD8 T cells in the brain as wildtype and Fas Ligand deficient animals, perforin deficient mice were resistant to tight junction alterations and CNS vascular permeability. To our knowledge, this study is the first to demonstrate that CNS infiltrating antigen-specific CD8 T cells have the capacity to initiate BBB tight junction disruption through a non-apoptotic perforin dependent mechanism and our model is one of few that are useful for studies in this field. These novel findings are highly relevant to the development of therapies designed to control immune mediated CNS vascular permeability
Deregulation of Rab and Rab Effector Genes in Bladder Cancer
Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer