21 research outputs found

    Projected Loss of a Salamander Diversity Hotspot as a Consequence of Projected Global Climate Change

    Get PDF
    Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. Methodology/Principal Findings: We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO 2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. Conclusion/Significance: While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did no

    Application Of Stable Isotope Analysis To Study Temporal Changes In Foraging Ecology In A Highly Endangered Amphibian

    Get PDF
    Background -- Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage) makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. Methodology/findings -- I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of 13/12C and 15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss’ dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia) made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. Conclusions/significance -- Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This study illustrates the feasibility of stable isotope analysis in identifying preferred prey species that can be used to guide conservation management of both wild and captive food sources for endangered species.This work was generously funded by a Sigma Xi Grant-In-Aid of Research (http://www.sigmaxi.org/programs/giar/ind​ex.shtml), a Howard McCarley Student Research Award from the Southwestern Association of Naturalists (http://biosurvey.ou.edu/swan/stuaeng.htm​#_HOWARD_MCCARLEY), a grant from the Barton Springs Salamander Conservation Fund (administered by the City of Austin and Austin Community Foundation; http://www.austincommunityfoundation.org​/?nd=news#Salamander) and grants from the Zoology Scholarship Endowment for Excellence, Dorothea Bennett Memorial Graduate Fellowship and Terrell H. Hamilton Endowed Graduate Fellowship at the University of Texas at Austin (http://www.biosci.utexas.edu/graduate/ee​b/current.aspx). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o
    corecore