39 research outputs found

    KCa1.1, a calcium-activated potassium channel subunit alpha 1, is targeted by miR-17-5p and modulates cell migration in malignant pleural mesothelioma

    Get PDF
    © 2016 Lin et al. Background: Malignant pleural mesothelioma (MPM) is an aggressive, locally invasive, cancer elicited by asbestos exposure and almost invariably a fatal diagnosis. To date, we are one of the leading laboratory that compared microRNA expression profiles in MPM and normal mesothelium samples in order to identify dysregulated microRNAs with functional roles in mesothelioma. We interrogated a significant collection of MPM tumors and normal pleural samples in our biobank in search for novel therapeutic targets. Methods: Utilizing mRNA-microRNA correlations based on differential gene expression using Gene Set Enrichment Analysis (GSEA), we systematically combined publicly available gene expression datasets with our own MPM data in order to identify candidate targets for MPM therapy. Results: We identified enrichment of target binding sites for the miR-17 and miR-30 families in both MPM tumors and cell lines. RT-qPCR revealed that members of both families were significantly downregulated in MPM tumors and cell lines. Interestingly, lower expression of miR-17-5p (P = 0.022) and miR-20a-5p (P = 0.026) was clearly associated with epithelioid histology. We interrogated the predicted targets of these differentially expressed microRNA families in MPM cell lines, and identified KCa1.1, a calcium-activated potassium channel subunit alpha 1 encoded by the KCNMA1 gene, as a target of miR-17-5p. KCa1.1 was overexpressed in MPM cells compared to the (normal) mesothelial line MeT-5A, and was also upregulated in patient tumor samples compared to normal mesothelium. Transfection of MPM cells with a miR-17-5p mimic or KCNMA1-specific siRNAs reduced mRNA expression of KCa1.1 and inhibited MPM cell migration. Similarly, treatment with paxilline, a small molecule inhibitor of KCa1.1, resulted in suppression of MPM cell migration. Conclusion: These functional data implicating KCa1.1 in MPM cell migration support our integrative approach using MPM gene expression datasets to identify novel and potentially druggable targets

    Meta-analysis on the effect of the N363S polymorphism of the glucocorticoid receptor gene (GRL) on human obesity

    Get PDF
    BACKGROUND: Since both excess glucocorticoid secretion and central obesity are clinical features of some obese patients, it is worthwhile to study a possible association of glucocorticoid receptor gene (GRL) variants with obesity. Previous studies have linked the N363S variant of the GRL gene to increased glucocorticoid effects such as higher body fat, a lower lean-body mass and a larger insulin response to dexamethasone. However, contradictory findings have been also reported about the association between this variant and obesity phenotypes. Individual studies may lack statistical power which may result in disparate results. This limitation can be overcome using meta-analytic techniques. METHODS: We conducted a meta-analysis to assess the association between the N363S polymorphism of the GRL gene and obesity risk. In addition to published research, we included also our own unpublished data -three novel case-control studies- in the meta-analysis The new case-control studies were conducted in German and Spanish children, adolescents and adults (total number of subjects: 1,117). Genotype was assessed by PCR-RFLP (Tsp509I). The final formal meta-analysis included a total number of 5,909 individuals. RESULTS: The meta-analysis revealed a higher body mass index (BMI) with an overall estimation of +0.18 kg/m(2 )(95% CI: +0.004 to +0.35) for homo-/heterozygous carriers of the 363S allele of the GRL gene in comparison to non-carriers. Moreover, differences in pooled BMI were statistically significant and positive when considering one-group studies from the literature in which participants had a BMI below 27 kg/m(2 )(+ 0.41 kg/m(2 )[95% CI +0.17 to +0.66]), but the differences in BMI were negative when only our novel data from younger (aged under 45) and normal weight subjects were pooled together (-0.50 kg/m(2 )[95% CI -0.84 to -0.17]). The overall risk for obesity for homo-/heterozygous carriers of the 363S allele was not statistically significant in the meta-analysis (pooled OR = 1.02; 95% CI: 0.56–1.87). CONCLUSION: Although certain genotypic effects could be population-specific, we conclude that there is no compelling evidence that the N363S polymorphism of the GRL gene is associated with either average BMI or obesity risk

    Trends in US home food preparation and consumption: analysis of national nutrition surveys and time use studies from 1965–1966 to 2007–2008

    Get PDF
    BACKGROUND: It has been well-documented that Americans have shifted towards eating out more and cooking at home less. However, little is known about whether these trends have continued into the 21(st) century, and whether these trends are consistent amongst low-income individuals, who are increasingly the target of public health programs that promote home cooking. The objective of this study is to examine how patterns of home cooking and home food consumption have changed from 1965 to 2008 by socio-demographic groups. METHODS: This is a cross-sectional analysis of data from 6 nationally representative US dietary surveys and 6 US time-use studies conducted between 1965 and 2008. Subjects are adults aged 19 to 60 years (n= 38,565 for dietary surveys and n=55,424 for time-use surveys). Weighted means of daily energy intake by food source, proportion who cooked, and time spent cooking were analyzed for trends from 1965–1966 to 2007–2008 by gender and income. T-tests were conducted to determine statistical differences over time. RESULTS: The percentage of daily energy consumed from home food sources and time spent in food preparation decreased significantly for all socioeconomic groups between 1965–1966 and 2007–2008 (p ≤ 0.001), with the largest declines occurring between 1965 and 1992. In 2007–2008, foods from the home supply accounted for 65 to 72% of total daily energy, with 54 to 57% reporting cooking activities. The low income group showed the greatest decline in the proportion cooking, but consumed more daily energy from home sources and spent more time cooking than high income individuals in 2007–2008 (p ≤ 0.001). CONCLUSIONS: US adults have decreased consumption of foods from the home supply and reduced time spent cooking since 1965, but this trend appears to have leveled off, with no substantial decrease occurring after the mid-1990’s. Across socioeconomic groups, people consume the majority of daily energy from the home food supply, yet only slightly more than half spend any time cooking on a given day. Efforts to boost the healthfulness of the US diet should focus on promoting the preparation of healthy foods at home while incorporating limits on time available for cooking

    HYPERTENSION

    No full text

    A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries

    Full text link
    Approximately 10% of global health research is devoted to 90% of global disease burden (the so-called “10/90 Gap”) and it often neglects those diseases most prevalent in low-income countries. Antibiotic resistant bacterial infections are known to impact on healthcare, food security, and socio-economic fabric in the developing countries. With a global antibiotic resistance crisis currently reaching a critical level, the unmet needs in the developing countries are even more striking. The failure of traditional antimicrobials has led to renewed interest in century-old bacteriophage (phage) therapy in response to the urgent need to develop alternative therapies to treat infections. Phage therapy may have particular value in developing countries where relevant phages can be sourced and processed locally and efficiently, breaking specifically the economic barrier of access to expensive medicine. Hence this makes phage therapy an attractive and feasible option. In this review, we draw our respective clinical experience as well as phage therapy research and clinical trial, and discuss the ways in which phage therapy might reduce the burden of some of the most important bacterial infections in developing countries

    Association and linkage analyses of glucocorticoid receptor gene markers in essential hypertension

    No full text
    Suggestive evidence has been obtained in a "4-corners" study for involvement of the glucocorticoid receptor gene (GRL) in genetic variation in blood pressure. Therefore, we tested markers at the GRL locus for association and linkage with essential hypertension (HT). For the association study, we used a well-characterized group of 129 white Australians of Anglo-Celtic extraction who had HT, a strong family history of HT (2 parents with the disease), and early-onset moderate-to-severe disease. Controls were 195 normotensive white subjects whose parents were normotensive past the age of 50 years. For the linkage study, we used 175 sibling pairs of similar ancestry. The case-control groups were genotyped for an Asn363Ser variant in exon 2, a GTT variant in intron 4, and a microsatellite marker (D5S207) tightly linked

    A microrna guide for clinicians and basic scientists: Background and experimental techniques.

    No full text
    MicroRNAs (miRNAs) are short non-coding RNA molecules that are approximately 22 nucleotides in length. In the last 10. years, miRNA research and discovery has advanced at a rapid rate. This review provides a brief overview of the discovery and biology of miRNAs, and summarises some of the experimental techniques used for isolation, detection, target prediction, and regulation of miRNAs. We also outline experimental workflows for investigators new to the field, and discuss the diagnostic and therapeutic application of miRNAs. © 2011 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ)

    Gene-expression profiling of peripheral blood mononuclear cells in sepsis

    No full text
    OBJECTIVES:: It has been shown that gene-expression profiling of circulating neutrophils could identify signature genes of sepsis. However, whether similar transcriptional changes occurred in peripheral blood mononuclear cells (PBMC) was not known. Using microarray technology, we performed gene-expression profiling of PBMC to identify signature genes that distinguish sepsis from noninfectious causes of systemic inflammatory response syndrome (SIRS), between Gram-positive and Gram-negative sepsis. DESIGN:: A cross-sectional, observational study. SETTING:: A 20-bed general intensive care unit of a tertiary referral hospital. PATIENTS:: Seventy critically ill patients (46 sepsis and 24 SIRS). INTERVENTIONS:: Intravenous blood was collected for leukocyte separation and RNA extraction. Gene-expression profiling was performed on PBMC using Affymetrix GeneChip microarrays with 54,675 transcripts. Data were divided into a training set (n = 35) and a validation set (n = 35). A molecular signature was developed in the training set using support vector machine and was then validated in the validation set. MEASUREMENTS AND MAIN RESULTS:: We identified a molecular signature of 138 genes that could differentiate between sepsis and SIRS patients with 91% and 80% accuracy in the training and validation sets, respectively. There were no signature genes that could differentiate between Gram-positive and Gram-negative sepsis. The expression of genes involved in inflammatory response and immune function was significantly reduced in septic patients when compared with those with SIRS. Genes involved in apoptosis, on the other hand, were more highly expressed in septic patients. CONCLUSION:: There was evidence of sepsis-related immunosuppression and reduced inflammatory response in mononuclear cells on a transcriptome level. These characteristic transcriptional changes can be used to aid the diagnosis of sepsis. © 2009 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins

    Human induced pluripotent stem cells derived under feeder-free conditions display unique cell cycle and DNA replication gene profiles

    No full text
    Use of animal feeder layers and serum containing media in the derivation and propagation of induced pluripotent stem cells (iPSCs) can hinder clinical translation, because of the presence of xeno-material/pathogens. A defined and standardized system would be ideal for generating a homogenous population of iPSCs, which closely resembles human embryonic stem cells (hESCs). We report here a novel and extensive comparison between our in-house produced iPSCs and hESCs under 'feeder' and 'feeder-free' conditions, using transcriptomic genome-wide microarray analysis. We generated a list of pluripotency-associated and bivalent domain-containing genes by meta-analysis to measure qualitatively the degree of reprogramming in feeder-free derived, in which both profiles displayed similar levels of gene expression as in hESCs. Gene ontology analysis showed that feeder-free iPSCs have enriched terms belonging to DNA repair/replication and cell cycle, which are signature to pluripotent cells. Transcriptomic data combined with directed differentiation assays, indicated that variability among iPSC lines is minimized when using a feeder-free cultural system, which may serve as a platform for further developing regenerative medicine compliant human iPSCs
    corecore