89 research outputs found

    Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Get PDF
    BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(®)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV

    Home Telehealth Uptake and Continued Use Among Heart Failure and Chronic Obstructive Pulmonary Disease Patients: a Systematic Review

    Get PDF
    Background Home telehealth has the potential to benefit heart failure (HF) and chronic obstructive pulmonary disease (COPD) patients, however large-scale deployment is yet to be achieved. Purpose The aim of this review was to assess levels of uptake of home telehealth by patients with HF and COPD and the factors that determine whether patients do or do not accept and continue to use telehealth. Methods This research performs a narrative synthesis of the results from included studies. Results Thirty-seven studies met the inclusion criteria. Studies that reported rates of refusal and/or withdrawal found that almost one third of patients who were offered telehealth refused and one fifth of participants who did accept later abandoned telehealth. Seven barriers to, and nine facilitators of, home telehealth use were identified. Conclusions Research reports need to provide more details regarding telehealth refusal and abandonment, in order to understand the reasons why patients decide not to use telehealth

    Synthesis and Enhanced Field-Emission of Thin-Walled, Open-Ended, and Well-Aligned N-Doped Carbon Nanotubes

    Get PDF
    Thin-walled, open-ended, and well-aligned N-doped carbon nanotubes (CNTs) on the quartz slides were synthesized by using acetonitrile as carbon sources. As-obtained products possess large thin-walled index (TWI, defined as the ratio of inner diameter and wall thickness of a CNT). The effect of temperature on the growth of CNTs using acetonitrile as the carbon source was also investigated. It is found that the diameter, the TWI of CNTs increase and the Fe encapsulation in CNTs decreases as the growth temperature rises in the range of 780–860°C. When the growth temperature is kept at 860°C, CNTs with TWI = 6.2 can be obtained. It was found that the filed-emission properties became better as CNT growth temperatures increased from 780 to 860°C. The lowest turn-on and threshold field was 0.27 and 0.49 V/μm, respectively. And the best field-enhancement factors reached 1.09 × 105, which is significantly improved about an order of magnitude compared with previous reports. In this study, about 30 × 50 mm2 free-standing film of thin-walled open-ended well-aligned N-doped carbon nanotubes was also prepared. The free-standing film can be transferred easily to other substrates, which would promote their applications in different fields

    The genetic basis and evolution of red blood cell sickling in deer

    Get PDF
    Crescent-shaped red blood cells, the hallmark of sickle-cell disease, present a striking departure from the biconcave disc shape normally found in mammals. Characterized by increased mechanical fragility, sickled cells promote haemolytic anaemia and vaso-occlusions and contribute directly to disease in humans. Remarkably, a similar sickle-shaped morphology has been observed in erythrocytes from several deer species, without obvious pathological consequences. The genetic basis of erythrocyte sickling in deer, however, remains unknown. Here, we determine the sequences of human β-globin orthologues in 15 deer species and use protein structural modelling to identify a sickling mechanism distinct from the human disease, coordinated by a derived valine (E22V) that is unique to sickling deer. Evidence for long-term maintenance of a trans-species sickling/non-sickling polymorphism suggests that sickling in deer is adaptive. Our results have implications for understanding the ecological regimes and molecular architectures that have promoted convergent evolution of sickling erythrocytes across vertebrates

    Structure-Based Predictive Models for Allosteric Hot Spots

    Get PDF
    In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues

    Patterns of infant handling and relatedness in Barbary macaques (Macaca sylvanus) on Gibraltar

    Full text link
    Among papionin primates, the Barbary macaque (Macaca sylvanus) shows the most extensive interactions between infants and group members other than the mother. Two different types of interactions occur: (1) long-lasting dyadic interactions between a handler and an infant, and (2) brief triadic interactions between two handlers involving an infant. Previous investigations showed that infant handling by males is best explained as use of infants to manage relationships with other males. In contrast, no adaptive explanation for infant handling by females emerged. Here, we compared the infant-handling pattern between subadult/adult males and subadult/adult females in a free-ranging group of 46 Barbary macaques on Gibraltar to test whether the relationship management hypothesis also applies to female handlers. We further investigated the infant-handling pattern of juveniles and used microsatellite markers to estimate relatedness between infant handlers and the infant’s mother. We found that males, females and juveniles all participated extensively in triadic interactions using infants of above-average related females. In contrast, only males and juveniles were highly involved in dyadic interactions with infants of related females, while females rarely handled infants otherthan their own. The pattern of infant handling was entirely compatible with the predictions of the relationship management hypothesis for males and mostly so for females. Moreover, our genetic analysis revealed that males and females differ in their partner choice: while females preferred to interact with related females, males had no significant preference to interact with related males. We further discuss the observed above-average relatedness values between infant handlers and the infant’s mother in the light of kin-selection theory

    Calculation of the Ground State Energy of Hydrogen at Interstital Sites in a Lithium Cluster

    No full text
    • …
    corecore