7 research outputs found
Effect of heating rate on the crack formation during baking in carbon anodes used in aluminum industry
The quality of carbon anodes used in aluminum industry depends on the raw material properties and the manufacturing process parameters. It is one of the key factors directly related to the aluminum production cost. The degradation in anode quality such as crack formation increases the energy consumption, the environmental emissions, and the smelter’s overall operating cost. The objective of this work is to investigate the formation of cracks in several industrial green anode samples during baking at different heating rates and to determine the influence of this baking parameter on the crack formation. The samples were characterized before and after baking by measuring a number of physical properties (electrical resistivity, density, etc.) which define the final quality of the anode samples. Also, techniques based on ultra-sound and scanning electron microscopy were used to determine the extent of cracking after baking
Description and applications of a 3D mathematical model for horizontal anode baking furnaces
In aluminum industry, carbon anodes are consumed continuously during alumina reduction in the electrolysis cells. Anodes are made of calcined coke, butt, and recycled anode particles and pitch as the binder. Green anodes are baked in large furnaces where they attain specific properties in terms of density, mechanical strength, and electrical conductivity. Baking is an important and costly step in carbon anode production. The proper operation of the furnace provides the required anode quality. Mathematical modeling allows the prediction of the heating profile of anodes during baking. Taking into account all the relevant phenomena, a 3D transient mathematical model was developed to simulate the different stages of the baking process in the furnace. The predictions give a detailed view of the furnace operation and performance. In this article, the 3D model is described, and the results on the impact of various parameters on furnace behavior are presented
