31 research outputs found

    Interactive Responses of a Thalamic Neuron to Formalin Induced Lasting Pain in Behaving Mice

    Get PDF
    Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, since previous studies were done under either neuropathic pain conditions or often under anesthesia, the mechanism of thalamic pain modulation under awake conditions is not well understood. We therefore characterized the thalamic firing patterns of behaving mice in response to nociceptive pain induced by inflammation. Our results demonstrated that nociceptive pain responses were positively correlated with tonic firing and negatively correlated with burst firing of individual TC neurons. Furthermore, burst properties such as intra-burst-interval (IntraBI) also turned out to be reliably correlated with the changes of nociceptive pain responses. In addition, brain stimulation experiments revealed that only bursts with specific bursting patterns could significantly abolish behavioral nociceptive responses. The results indicate that specific patterns of bursting activity in thalamocortical relay neurons play a critical role in controlling long-lasting inflammatory pain in awake and behaving mice

    A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior

    Get PDF
    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions

    Silencing of the Ca(v)3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception

    No full text
    Analgesic therapies are still limited and sometimes poorly effective, therefore finding new targets for the development of innovative drugs is urgently needed. In order to validate the potential utility of blocking T-type calcium channels to reduce nociception, we explored the effects of intrathecally administered oligodeoxynucleotide antisenses, specific to the recently identified T-type calcium channel family (Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3), on reactions to noxious stimuli in healthy and mononeuropathic rats. Our results demonstrate that the antisense targeting Ca(V)3.2 induced a knockdown of the Ca(V)3.2 mRNA and protein expression as well as a large reduction of ‘Ca(V)3.2-like' T-type currents in nociceptive dorsal root ganglion neurons. Concomitantly, the antisense treatment resulted in major antinociceptive, anti-hyperalgesic, and anti-allodynic effects, suggesting that Ca(V)3.2 plays a major pronociceptive role in acute and chronic pain states. Taken together, the results provide direct evidence linking Ca(V)3.2 T-type channels to pain perception and suggest that Ca(V)3.2 may offer a specific molecular target for the treatment of pain

    Effect of Variation in Diacylglycerol Kinase Eta (DGKH) Gene on Brain Function in a Cohort at Familial Risk of Bipolar Disorder

    No full text
    Several lines of evidence indicate that the diacylglycerol kinase eta (DGKH) gene is implicated in the etiology of bipolar disorder (BD). However, the functional neural mechanisms of DGKH's risk association remain unknown. Therefore, we examined the effects of three haplotype-tagging risk variants in DGKH (single nucleotide polymorphisms rs9315885, rs1012053, and rs1170191) on brain activation using a verbal fluency functional magnetic resonance imaging task. The subject groups consisted of young individuals at high familial risk of BD (n=81) and a comparison group of healthy controls (n=75). Individuals were grouped based on risk haplotypes described in previous studies. There was a significant risk haplotype*group interaction in the left medial frontal gyrus (BA10, involving anterior cingulate BA32), left precuneus, and right parahippocampal gyrus. All regions demonstrated greater activation during the baseline condition than sentence completion. Individuals at high familial risk for BD homozygous for the DGKH risk haplotype demonstrated relatively greater activation (poor suppression) of these regions during the task vs the low-risk haplotype subjects. The reverse pattern was seen for the control subjects. These findings suggest that there are differential effects of the DGKH gene in healthy controls vs the bipolar high-risk group, which manifests as a failure to disengage default-mode regions in those at familial risk carrying the risk haplotype

    Genetic polymorphisms associated with exertional rhabdomyolysis

    Full text link
    Exertional rhabdomyolysis (ER) occurs in young, otherwise healthy, individuals principally during strenuous exercise, athletic, and military training. Although many risk factors have been offered, it is unclear why some individuals develop ER when participating in comparable levels of physical exertion under identical environmental conditions and others do not. This study investigated possible genetic polymorphisms that might help explain ER. DNA samples derived from a laboratory-based study of persons who had never experienced an episode of ER (controls) and clinical ER cases referred for testing over the past several years were analyzed for single nucleotide polymorphisms (SNPs) in candidate genes. These included angiotensin I converting enzyme (ACE), α-actinin-3 (ACTN3), creatine kinase muscle isoform (CKMM), heat shock protein A1B (HSPA1B), interleukin 6 (IL6), myosin light chain kinase (MYLK), adenosine monophosphate deaminase 1 (AMPD1), and sickle cell trait (HbS). Population included 134 controls and 47 ER cases. The majority of ER cases were men (n = 42/47, 89.4 %); the five women with ER were Caucasian. Eighteen African Americans (56.3 %) were ER cases. Three SNPs were associated with ER: CKMM Ncol, ACTN3 R577X, and MYLK C37885A. ER cases were 3.1 times more likely to have the GG genotype of CKMM (odds ratio/OR = 3.1, confidence interval/CI 1.33-7.10), 3.0 times for the XX genotype of ACTN3 SNP (OR = 2.97, CI 1.30-3.37), and 5.7 times for an A allele of MYLK (OR = 21.35, CI 2.60-12.30). All persons with HbS were also ER cases. Three distinct polymorphisms were associated with ER. Further work will be required to replicate these findings and determine the mechanism(s) whereby these variants might confer susceptibility
    corecore