19 research outputs found

    Lower lid entropion secondary to treatment with alpha-1a receptor antagonist: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The use of alpha-1a receptor antagonists (tamsulosin) is widely accepted in the treatment of benign prostatic hypertrophy (BPH). It has previously been implicated as a causative agent in intra-operative floppy iris syndrome due to its effects on the smooth muscle. We report a case of lower lid entropion that may be related to a patient commencing treatment of tamsulosin.</p> <p>Case presentation</p> <p>A 74-year-old Caucasian man was started on alpha 1-a receptor antagonist (Tamsulosin) treatment for benign prostatic hypertrophy. Eight days later, he presented to the ophthalmology unit with a right lower lid entropion which was successfully treated surgically with a Weiss procedure.</p> <p>Conclusion</p> <p>We report a case of lower lid entropion that may be secondary to the recent use of an alpha-1a blocker (tamsulosin). This can be explained by considering the effect of autonomic blockade on alpha-1 receptors in the Muller's muscle on a patient that may already have an anatomical predisposition to entropion formation due to a further reduction in muscle tone.</p

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases
    corecore