73 research outputs found
Variation in mitochondrial function in hypoxia-sensitive and hypoxia-tolerant human glioma cells
We have shown previously that human glioblastoma multiforme cells vary in their ability to survive under hypoxic conditions. Under oxygen limiting conditions, hypoxia-tolerant cells decrease their oxygen consumption rate whereas hypoxia-sensitive cells continue to consume oxygen at a relatively steady rate until the oxygen supply becomes exhausted. We now show that hypoxia-tolerant and hypoxia-sensitive cells exhibit distinct patterns of mitochondrial function in response to hypoxic challenge. Hypoxia-tolerant cell lines retain stable mitochondrial membrane potential and ATP concentration when incubated under oxygen limiting conditions. In addition, hypoxia-tolerant cell lines are consistently more sensitive to a wide spectrum of inhibitors of mitochondrial function than are hypoxia-sensitive cells. In contrast, the hypoxia-sensitive cells are unable to maintain stable mitochondrial membrane potential and ATP levels when incubated at reduced oxygen tension. These results demonstrate significant differences in the mitochondrial function between these two phenotypes and reinforce previous data that suggest a regulatory role for mitochondria in the development of hypoxia tolerance
Using Agent-Based Modelling to Inform Policy – What Could Possibly Go Wrong?
© 2019, Springer Nature Switzerland AG. Scientific modelling can make things worse, as in the case of the North Atlantic Cod Fisheries Collapse. Some of these failures have been attributed to the simplicity of the models used compared to what they are trying to model. MultiAgent-Based Simulation (MABS) pushes the boundaries of what can be simulated, prompting many to assume that it can usefully inform policy, even in the face of complexity. That said, MABS also brings with it new difficulties and potential confusions. This paper surveys some of the pitfalls that can arise when MABS analysts try to do this. Researchers who claim (or imply) that MABS can reliably predict are criticised in particular. However, an alternative is suggested – that of using MABS for a kind of uncertainty analysis – identifying some of the possible ways a policy can go wrong (or indeed go right). A fisheries example is given. This alternative may widen, rather than narrow, the range of evidence and possibilities that are considered, which could enrich the policy-making process. We call this Reflexive Possibilistic Modelling
Optimal foraging and community structure: implications for a guild of generalist grassland herbivores
A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd
Use of rice polishing and sugar cane molasses as supplements in dual-purpose cows fed Leucaena leucocephala and Pennisetum purpureum
- …
