17 research outputs found

    Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals

    Get PDF
    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals

    Technical and Comparative Aspects of Brain Glycogen Metabolism.

    Get PDF
    It has been known for over 50 years that brain has significant glycogen stores, but the physiological function of this energy reserve remains uncertain. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism, and may also stem from some conceptual limitations. Factors presenting technical challenges include low glycogen content in brain, non-homogenous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here, we briefly review aspects of glycogen structure and metabolism that bear on these technical challenges, and discuss ways these can be overcome. We also highlight physiological aspects of glycogen metabolism that limit the conditions under which glycogen metabolism can be useful or advantageous over glucose metabolism. Comparisons with glycogen metabolism in skeletal muscle provide an additional perspective on potential functions of glycogen in brain

    Lactate Produced by Glycogenolysis in Astrocytes Regulates Memory Processing

    Get PDF
    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions

    Diabetes in rat pregnancy alters renal calcium and magnesium reabsorption and bone formation in adult offspring

    No full text
    Aims/hypothesis We tested the hypothesis that diabetes in pregnancy can result in the in-utero reprogramming of renal calcium and magnesium handling and of bone formation in the offspring, which persists into adulthood. Methods Male offspring of streptozotocin-treated diabetic rats (OD rats) and of control non-diabetic animals (OC rats) were investigated as neonates and at 8, 12 and 16 weeks of age. Results Compared with OC rats, urinary calcium and magnesium output was significantly reduced in OD rats at every age studied; Na+ and K+ outputs were unaffected. The renal expression of proteins involved in the tubular reabsorption of calcium (calcium ATPase, calbindin-D28k and epithelial calcium channel) was increased in OD animals compared with that in OC animals. Additionally, we observed that adult OD rats had lower trabecular and higher cortical femoral bone volumes, explained by deposition of bone on the endosteal surface. Conclusions/interpretation These data show that diabetes in pregnancy has profound effects on male offspring in terms of renal tubular calcium and magnesium reabsorption and the normal pattern of bone formation. These effects persist into adulthood. Such long-lasting effects of diabetes on kidney and the skeleton were not suspected and could have important implications for the health of children born to diabetic women

    Increased Renal Tubular Reabsorption of Calcium and Magnesium by the Offspring of Diabetic Rat Pregnancy

    No full text
    Diabetic pregnancy has a marked influence on offspring calcium and magnesium homeostasis. Urinary excretion of calcium and magnesium is reduced, yet offspring of diabetic pregnancy exhibit hypomagnesemia and hypocalcemia. The aim of this study was to measure renal hemodynamic and tubular function in the offspring of diabetic (OD) and control, nondiabetic (OC) rats at 4 and 8 wk of age to determine the glomerular and tubular mechanisms through which renal calcium and magnesium handling are programmed in utero. The fraction of filtered calcium that was excreted was significantly lower in OD at both 4 and 8 wk of age [8 wk: OC (n = 6), 11.8 ± 2.9 versus OD (n = 5), 4.3 ± 0.6%; p < 0.05] and that of magnesium was lower at 8 wk of age [OC (n = 6), 42.4 ± 7.5 versus OD (n = 5), 13.0 ± 1.7%; p < 0.01]. This increased reabsorption occurred despite an elevated GFR in OD. These findings clearly indicate that tubular reabsorptive mechanisms for calcium and magnesium are increased markedly in OD. Serum PTH concentration was reduced in 8-wk-old OD [OC (n = 7), 539.4 ± 142.1 versus OD (n = 9), 174.3 ± 69.4 pg/ml; p < 0.05], consistent with previous reports in human infants. Taken together, these observations suggest that the basis for the altered renal magnesium and calcium handling in OD involves increased tubular transport activity and possibly increased sensitivity of these mechanisms to PTH
    corecore