115 research outputs found

    Evaluation of intracellular signalling pathways in response to insulin-like growth factor I in apoptotic-resistant activated human hepatic stellate cells

    Get PDF
    BACKGROUND: Human hepatic stellate cells have been shown to be resistant to apoptotic stimuli. This is likely dependent on the activation of anti-apoptotic pathways upon transition of these cells to myofibroblast-like cells. In particular, previous studies have demonstrated an increased expression of the anti-apoptotic protein Bcl-2 and a decreased expression of the pro-apoptotic protein Bax during the transition of the hepatic stellate cell phenotype from quiescent to myofibroblast-like cells. However, the role and expression of other key anti-apoptotic and survival pathways elicited by polypeptide growth factors involved in the chronic wound healing process remain to be elucidated. In particular, insulin growth factor-I promotes chemotactic and mitogenic effects in activated human hepatic stellate cells and these effects are mediated by the activation of PI 3-K. The role of insulin growth factor-I as a survival factor in human hepatic stellate cells needs to be substantiated. The aim of this study was to evaluate the involvement of other key anti-apoptotic pathways such as PI-3K/Akt/p-Bad in response to insulin growth factor-I. RESULTS: Insulin growth factor-I induced activation of Akt followed by Bad phosphorylation after 15 minutes of incubation. These effects were PI-3k dependent since selective inhibitors of this molecule, wortmannin and LY294002, inhibited both Akt and Bad phosphorylation. The effect of insulin growth factor-I on the activation of two downstream targets of Akt activation, that is, GSK3 and FHKR, both implicated in the promotion of cell survival was also investigated. Both targets became phosphorylated after 15 minutes of incubation, and these effects were also PI-3K-dependent. Despite the activation of this survival pathway insulin growth factor-I did not have a remarkable biological effect, probably because other insulin growth factor-I-independent survival pathways were already maximally activated in the process of hepatic stellate cell activation. However, after incubation of the cells with a strong apoptotic stimuli such as Fas ligand+cycloheximide, a small percentage of hepatic stellate cells underwent programmed cell death that was partially rescued by insulin growth factor-I. CONCLUSION: In addition to Bcl-2, several other anti-apoptotic pathways are responsible for human hepatic stellate cell resistance to apoptosis. These features are relevant for the progression and limited reversibility of liver fibrosis in humans

    Increased Liver Uptake and Reduced Hepatic Stellate Cell Activation with a Cell-Specific Conjugate of the Rho-kinase Inhibitor Y27632

    Get PDF
    Rho-kinase regulates activation of hepatic stellate cells (HSC) during liver fibrosis, but the ubiquitous presence of this kinase may hinder examination of its exact role and the therapeutic use of inhibitors. We therefore coupled the Rho-kinase inhibitor Y27632 to a drug carrier that binds the mannose-6-phosphate insulin-like growth factor II (M6P/IGFII)-receptor which is upregulated on activated HSC. Y27632 was coupled to mannose-6-phosphate human serum albumin (M6PHSA), and in vitro experiments were performed on primary rat HSC. Biodistribution and effect studies were performed in an acute CCl(4) model in mice. Y27-conjugate remained stable in serum, while drug was efficiently released in liver homogenates. Receptor-blocking studies revealed that it was specifically taken up through the M6P/IGFII-receptor on fibroblasts, and it inhibited expression of fibrotic markers in activated HSC. In vivo, liver drug levels were significantly higher after injection of Y27-conjugate as compared to Y27632, and the conjugate accumulated specifically in HSC. After acute CCl(4)-induced liver injury, Y27-conjugate reduced the local activation of HSC, whereas an equimolar dose of free drug did not. We conclude that specific targeting of a Rho-kinase inhibitor to HSC leads to enhanced accumulation of the drug in HSC, reducing early fibrogenesis in the liver

    Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer

    Get PDF
    Mast cell infiltration is often observed around human tumours. Inflammatory cells such as macrophages, neutrophils and mast cells infiltrating around tumours are known to contribute to tumour growth; however, the clinical significance of mast cell invasion in prostate cancer (PCa) has not been investigated. Mast cell infiltration was evaluated in 104 patients (age range, 45–88 years; median, 72 years), who underwent needle biopsy of the prostate and were confirmed to have PCa. Needle biopsy specimens of prostate were sliced into 5-μm-thick sections and immunostained for mast cells with monoclonal antibody against mast cell-specific tryptase. Mast cells were counted systematically under a microscope (× 400 magnification), and the relations between mast cell numbers and clinicopathologic findings were evaluated. The mast cell count was evaluated for prognostic value by multivariate analysis. Mast cells were immunostained around the cancer foci. The median number of mast cells in each case was 16. The mast cell count was higher around cancer foci in patients with higher Gleason scores than in those with low Gleason scores. The mast cell number correlated well with clinical stage (P<0.001). Prostate-specific antigen-free survival of patients with higher mast cell counts was better than that in patients with lower mast cell counts (P<0.001). Multivariate analysis revealed that mast cell count was a significant prognostic factor (P<0.005). The number of mast cells infiltrating around cancer foci in prostate biopsy specimens can be a significant prognostic factor of PCa

    Social navigation

    Get PDF
    In this chapter we present one of the pioneer approaches in supporting users in navigating the complex information spaces, social navigation support. Social navigation support is inspired by natural tendencies of individuals to follow traces of each other in exploring the world, especially when dealing with uncertainties. In this chapter, we cover details on various approaches in implementing social navigation support in the information space as we also connect the concept to supporting theories. The first part of this chapter reviews related theories and introduces the design space of social navigation support through a series of example applications. The second part of the chapter discusses the common challenges in design and implementation of social navigation support, demonstrates how these challenges have been addressed, and reviews more recent direction of social navigation support. Furthermore, as social navigation support has been an inspirational approach to various other social information access approaches we discuss how social navigation support can be integrated with those approaches. We conclude with a review of evaluation methods for social navigation support and remarks about its current state

    Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice

    Get PDF
    Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases

    Prostaglandin D2-supplemented “functional eicosanoid testing and typing” assay with peripheral blood leukocytes as a new tool in the diagnosis of systemic mast cell activation disease: an explorative diagnostic study

    Get PDF
    Background: Systemic mast cell activation disease (MCAD) is characterized by an enhanced release of mast cell-derived mediators, including eicosanoids, which induce a broad spectrum of clinical symptoms. Accordingly, the diagnostic algorithm of MCAD presupposes the proof of increased mast cell mediator release, but only a few mediators are currently established as routine laboratory parameters. We thus initiated an explorative study to evaluate in vitro typing of individual eicosanoid pattern of peripheral blood leukocytes (PBLs) as a new diagnostic tool in MCAD. Methods: Using the “functional eicosanoid testing and typing” (FET) assay, we investigated the balance (i.e. the complex pattern of formation, release and mutual interaction) of prostaglandin E2 (PGE2) and peptido-leukotrienes (pLT) release from PBLs of 22 MCAD patients and 20 healthy individuals. FET algorithms thereby consider both basal and arachidonic acid (AA)-, acetylsalicylic acid (ASA)-, and substance P (SP)-triggered release of PGE2 and pLT. The FET assay was further supplemented by analyzing prostaglandin D2 (PGD2), as mast cell-specific eicosanoid. Results: We observed marked PGE2-pLT imbalances for PBLs of MCAD patients, as indicated by a markedly enhanced mean FET value of 1.75 ± 0.356 (range: 1.14–2.36), compared to 0.53 ± 0.119 (range: 0.36-0.75) for healthy individuals. In addition, mean PGD2 release from PBLs of MCAD patients was significantly, 6.6-fold higher than from PBLs of healthy individuals (946 ± 302.2 pg/ml versus 142 ± 47.8 pg/ml; P < 0.001). In contrast to healthy individuals, PGD2 release from PBLs of MCAD patients was markedly triggered by SP (mean: 1896 ± 389.7 pg/ml; P < 0.001), whereas AA and ASA caused individually varying effects on both PGD2 and pLT release. Conclusions: The new in-vitro FET assay, supplemented with analysis of PGD2, demonstrated that the individual patterns of eicosanoid release from PBLs can unambiguously distinguish MCAD patients from healthy individuals. Notably, in our analyses, the FET value and both basal and triggered PGD2 levels were not significantly affected by MCAD-specific medication. Thus, this approach may serve as an in-vitro diagnostic tool to estimate mast cell activity and to support individualized therapeutic decision processes for patients suffering from MCAD

    SOX9 regulated matrix proteins are increased in patients serum and correlate with severity of liver fibrosis

    Get PDF
    Extracellular matrix (ECM) deposition and resultant scar play a major role in the pathogenesis and progression of liver fibrosis. Identifying core regulators of ECM deposition may lead to urgently needed diagnostic and therapetic strategies for the disease. The transcription factor Sex determining region Y box 9 (SOX9) is actively involved in scar formation and its prevalence in patients with liver fibrosis predicts progression. In this study, transcriptomic approaches of Sox9-abrogated myofibroblasts identified >30% of genes regulated by SOX9 relate to the ECM. Further scrutiny of these data identified a panel of highly expressed ECM proteins, including Osteopontin (OPN), Osteoactivin (GPNMB), Fibronectin (FN1), Osteonectin (SPARC) and Vimentin (VIM) as SOX9 targets amenable to assay in patient serum. In vivo all SOX-regulated targets were increased in human disease and mouse models of fibrosis and decreased following Sox9-loss in mice with parenchymal and biliary fibrosis. In patient serum samples, SOX9-regulated ECM proteins were altered in response to fibrosis severity, whereas comparison with established clinical biomarkers demonstrated superiority for OPN and VIM at detecting early stages of fibrosis. These data support SOX9 in the mechanisms underlying fibrosis and highlight SOX9 and its downstream targets as new measures to stratify patients with liver fibrosis

    Protective mechanisms of medicinal plants targeting hepatic stellate cell activation and extracellular matrix deposition in liver fibrosis

    Get PDF
    corecore