15 research outputs found

    Traffic-related air pollution and respiratory symptoms among asthmatic children, resident in Mexico City: the EVA cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taffic-related air pollution has been related to adverse respiratory outcomes; however, there is still uncertainty concerning the type of vehicle emission causing most deleterious effects.</p> <p>Methods</p> <p>A panel study was conducted among 147 asthmatic and 50 healthy children, who were followed up for an average of 22 weeks. Incidence density of coughing, wheezing and breathing difficulty was assessed by referring to daily records of symptoms and child's medication. The association between exposure to pollutants and occurrence of symptoms was evaluated using mixed-effect models with binary response and poisson regression.</p> <p>Results</p> <p>Wheezing was found to relate significantly to air pollutants: an increase of 17.4 μg/m<sup>3 </sup>(IQR) of PM<sub>2.5 </sub>(24-h average) was associated with an 8.8% increase (95% CI: 2.4% to 15.5%); an increase of 34 ppb (IQR) of NO<sub>2 </sub>(1-h maximum) was associated with an 9.1% increase (95% CI: 2.3% to16.4%) and an increase of 48 ppb (IQR) in O<sub>3 </sub>levels (1 hr maximum) to an increase of 10% (95% CI: 3.2% to 17.3%). Diesel-fueled motor vehicles were significantly associated with wheezing and bronchodilator use (IRR = 1.29; 95% CI: 1.03 to 1.62, and IRR = 1.32; 95% CI: 0.99 to 1.77, respectively, for an increase of 130 vehicles hourly, above the 24-hour average).</p> <p>Conclusion</p> <p>Respiratory symptoms in asthmatic children were significantly associated with exposure to traffic exhaust, especially from natural gas and diesel-fueled vehicles.</p

    Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the effects of daily fine particulate exposure (PM) have been well reviewed, the epidemiological and physiological evidence of cardiovascular effects associated to sub-daily exposures has not. We performed a theoretical model-driven systematic non-meta-analytical literature review to document the association between PM sub-daily exposures (≤6 hours) and arrhythmia, ischemia and myocardial infarction (MI) as well as the likely mechanisms by which sub-daily PM exposures might induce these acute cardiovascular effects. This review was motivated by the assessment of the risk of exposure to elevated sub-daily levels of PM during fireworks displays.</p> <p>Methods</p> <p>Medline and Elsevier's EMBase were consulted for the years 1996-2008. Search keywords covered potential cardiovascular effects, the pollutant of interest and the short duration of the exposure. Only epidemiological and experimental studies of adult humans (age > 18 yrs) published in English were reviewed. Information on design, population and PM exposure characteristics, and presence of an association with selected cardiovascular effects or physiological assessments was extracted from retrieved articles.</p> <p>Results</p> <p>Of 231 articles identified, 49 were reviewed. Of these, 17 addressed the relationship between sub-daily exposures to PM and cardiovascular effects: five assessed ST-segment depression indicating ischemia, eight assessed arrhythmia or fibrillation and five considered MI. Epidemiologic studies suggest that exposure to sub-daily levels of PM is associated with MI and ischemic events in the elderly. Epidemiological studies of sub-daily exposures suggest a plausible biological mechanism involving the autonomic nervous system while experimental studies suggest that vasomotor dysfunction may also relate to the occurrence of MI and ischemic events.</p> <p>Conclusions</p> <p>Future studies should clarify associations between cardiovascular effects of sub-daily PM exposure with PM size fraction and concurrent gaseous pollutant exposures. Experimental studies appear more promising for elucidating the physiological mechanisms, time courses and causes than epidemiological studies which employ central pollution monitors for measuring effects and for assessing their time course. Although further studies are needed to strengthen the evidence, given that exposure to sub-daily high levels of PM (for a few hours) is frequent and given the suggestive evidence that sub-daily PM exposures are associated with the occurrence of cardiovascular effects, we recommend that persons with cardiovascular diseases avoid such situations.</p

    Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence

    Get PDF
    A major public health goal is to determine linkages between specific pollution sources and adverse health outcomes. This paper provides an integrative evaluation of the database examining effects of vehicular emissions, such as black carbon (BC), carbonaceous gasses, and ultrafine PM, on cardiovascular (CV) morbidity and mortality. Less than a decade ago, few epidemiological studies had examined effects of traffic emissions specifically on these health endpoints. In 2002, the first of many studies emerged finding significantly higher risks of CV morbidity and mortality for people living in close proximity to major roadways, vs. those living further away. Abundant epidemiological studies now link exposure to vehicular emissions, characterized in many different ways, with CV health endpoints such as cardiopulmonary and ischemic heart disease and circulatory-disease-associated mortality; incidence of coronary artery disease; acute myocardial infarction; survival after heart failure; emergency CV hospital admissions; and markers of atherosclerosis. We identify numerous in vitro, in vivo, and human panel studies elucidating mechanisms which could explain many of these cardiovascular morbidity and mortality associations. These include: oxidative stress, inflammation, lipoperoxidation and atherosclerosis, change in heart rate variability (HRV), arrhythmias, ST-segment depression, and changes in vascular function (such as brachial arterial caliber and blood pressure). Panel studies with accurate exposure information, examining effects of ambient components of vehicular emissions on susceptible human subjects, appear to confirm these mechanisms. Together, this body of evidence supports biological mechanisms which can explain the various CV epidemiological findings. Based upon these studies, the research base suggests that vehicular emissions are a major environmental cause of cardiovascular mortality and morbidity in the United States. As a means to reduce the public health consequences of such emissions, it may be desirable to promulgate a black carbon (BC) PM2.5 standard under the National Ambient Air Quality Standards, which would apply to both on and off-road diesels. Two specific critical research needs are identified. One is to continue research on health effects of vehicular emissions, gaseous as well as particulate. The second is to utilize identical or nearly identical research designs in studies using accurate exposure metrics to determine whether other major PM pollutant sources and types may also underlie the specific health effects found in this evaluation for vehicular emissions

    Respiratory and immune response to maximal physical exertion following exposure to secondhand smoke in healthy adults

    Get PDF
    © 2012 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0031880We assessed the cardiorespiratory and immune response to physical exertion following secondhand smoke (SHS) exposure through a randomized crossover experiment. Data were obtained from 16 (8 women) non-smoking adults during and following a maximal oxygen uptake cycling protocol administered at baseline and at 0-, 1-, and 3- hours following 1-hour of SHS set at bar/restaurant carbon monoxide levels. We found that SHS was associated with a 12% decrease in maximum power output, an 8.2% reduction in maximal oxygen consumption, a 6% increase in perceived exertion, and a 6.7% decrease in time to exhaustion (P<0.05). Moreover, at 0-hours almost all respiratory and immune variables measured were adversely affected (P<0.05). For instance, FEV 1 values at 0-hours dropped by 17.4%, while TNF-α increased by 90.1% (P<0.05). At 3-hours mean values of cotinine, perceived exertion and recovery systolic blood pressure in both sexes, IL4, TNF-α and IFN-γ in men, as well as FEV 1/FVC, percent predicted FEV 1, respiratory rate, and tidal volume in women remained different compared to baseline (P<0.05). It is concluded that a 1-hour of SHS at bar/restaurant levels adversely affects the cardiorespiratory and immune response to maximal physical exertion in healthy nonsmokers for at least three hours following SHS. © 2012 Flouris et al.Published versio

    Correction: Respiratory and Immune Response to Maximal Physical Exertion following Exposure to Secondhand Smoke in Healthy Adults

    Get PDF
    We assessed the cardiorespiratory and immune response to physical exertion following secondhand smoke (SHS) exposure through a randomized crossover experiment. Data were obtained from 16 (8 women) non-smoking adults during and following a maximal oxygen uptake cycling protocol administered at baseline and at 0-, 1-, and 3- hours following 1-hour of SHS set at bar/restaurant carbon monoxide levels. We found that SHS was associated with a 12% decrease in maximum power output, an 8.2% reduction in maximal oxygen consumption, a 6% increase in perceived exertion, and a 6.7% decrease in time to exhaustion (P<0.05). Moreover, at 0-hours almost all respiratory and immune variables measured were adversely affected (P<0.05). For instance, FEV(1) values at 0-hours dropped by 17.4%, while TNF-α increased by 90.1% (P<0.05). At 3-hours mean values of cotinine, perceived exertion and recovery systolic blood pressure in both sexes, IL4, TNF-α and IFN-γ in men, as well as FEV(1)/FVC, percent predicted FEV(1), respiratory rate, and tidal volume in women remained different compared to baseline (P<0.05). It is concluded that a 1-hour of SHS at bar/restaurant levels adversely affects the cardiorespiratory and immune response to maximal physical exertion in healthy nonsmokers for at least three hours following SHS
    corecore