215 research outputs found

    Eficiência da bioadição na remoção de matéria orgânica em sistemas aquaculturais

    Get PDF
    Several techniques are currently used to treat effluents. Bioaugmentation is a new bioremediation strategy and has been employed to improve effluent quality by treating the water during the production process. This technology consists basically of the addition of microorganisms able to degrade or remove polluting compounds, especially organic matter and nutrients. The objective of this study was to assess the effects of bioaugmentation on some parameters of organic matter and on the performance of juvenile tilapias in an intensive aquaculture production system. The combination of two bacterial consortiums in a complete randomized design was employed in a factorial analysis with two factors. Statistical differences between treatments were analyzed by the analysis of variance (ANOVA) and Tukey test at the 5% level. One of the treatments, heterotrophic bacterial supplementation, was able to reduce biochemical oxygen demand (BOD) by 23%, dissolved organic carbon (DOC) by 83.7% and phytoplanktonic biomass by 43%. On the other hand, no damage was done to either the physical-chemical indicators of water quality or to the growth performance of juvenile tilapias assessed in this study.Existem diversas tecnologias para tratamento de efluentes, o processo de bioadição consiste em uma vertente da biorremediação e tem sido empregado na melhoria da qualidade dos efluentes através do tratamento da água de produção. Esta tecnologia consiste basicamente na adição de microrganismos com a capacidade de degradar ou remover compostos poluentes, especialmente matéria orgânica e nutrientes. Este estudo objetivou avaliar os efeitos da suplementação de composto bioativo sobre alguns parâmetros de matéria orgânica e de desempenho de juvenis de tilápias em um sistema intensivo de produção aquacultural. Foi empregada a combinação de dois consórcios bacterianos em delineamento inteiramente aleatorizado, em um esquema fatorial com dois fatores. As diferenças estatísticas entre os tratamentos foram analisadas por meio da análise de variância (ANOVA) e do teste de Tukey ao nível de 5%. Verificou-se neste estudo, que a bioadição heterotrófica foi capaz de reduzir em 23% a demanda bioquímica de oxigênio (DBO); em 83,7%, o carbono orgânico dissolvido (COD); e em 43%, a biomassa fitoplanctônica. Por outro lado, não se observou nenhum prejuízo com relação aos parâmetros físico-químicos de qualidade de água bem como ao desempenho de crescimento para juvenis de tilápias avaliados neste estudo.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Speciation by host switch in brood parasitic indigobirds

    Full text link
    A growing body of empirical and theoretical work supports the plausibility of sympatric speciation(1-3), but there remain few examples in which all the essential components of the process are well understood. The African indigobirds Vidua spp. are host-specific brood parasites. Indigobird nestlings are reared along with host young, and mimic the mouth markings of their respective hosts(4-6). As adults, male indigobirds mimic host song(4-7), whereas females use these songs to choose both their mates and the nests they parasitize(8). These behavioural mechanisms promote the cohesion of indigobird populations associated with a given host species, and provide a mechanism for reproductive isolation after a new host is colonized. Here we show that all indigobird species are similar genetically, but are significantly differentiated in both mitochondrial haplotype and nuclear allele frequencies. These data support a model of recent sympatric speciation. In contrast to the cuckoo Cuculus canorus, in which only female lineages are faithful to specific hosts(9,10), host switches have led to speciation in indigobirds because both males and females imprint on their hosts(8,11).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62510/1/nature01863.pd

    What's in a name; Genetic structure in Solanum section Petota studied using population-genetic tools

    Get PDF
    Background - The taxonomy and systematic relationships among species of Solanum section Petota are complicated and the section seems overclassified. Many of the presumed (sub)species from South America are very similar and they are able to exchange genetic material. We applied a population genetic approach to evaluate support for subgroups within this material, using AFLP data. Our approach is based on the following assumptions: (i) accessions that may exchange genetic material can be analyzed as if they are part of one gene pool, and (ii) genetic differentiation among species is expected to be higher than within species. Results - A dataset of 566 South-American accessions (encompassing 89 species and subspecies) was analyzed in two steps. First, with the program STRUCTURE 2.2 in an 'unsupervised' procedure, individual accessions were assigned to inferred clusters based on genetic similarity. The results showed that the South American members of section Petota could be arranged in 16 clusters of various size and composition. Next, the accessions within the clusters were grouped by maximizing the partitioning of genetic diversity among subgroups (i.e., maximizing Fst values) for all available individuals of the accessions (2767 genotypes). This two-step approach produced an optimal partitioning into 44 groups. Some of the species clustered as genetically distinct groups, either on their own, or combined with one or more other species. However, accessions of other species were distributed over more than one cluster, and did not form genetically distinct units. Conclusions - We could not find any support for 43 species (almost half of our dataset). For 28 species some level of support could be found varying from good to weak. For 18 species no conclusions could be drawn as the number of accessions included in our dataset was too low. These molecular data should be combined with data from morphological surveys, with geographical distribution data, and with information from crossing experiments to identify natural units at the species level. However, the data do indicate which taxa or combinations of taxa are clearly supported by a distinct set of molecular marker data, leaving other taxa unsupported. Therefore, the approach taken provides a general method to evaluate the taxonomic system in any species complex for which molecular data are available

    Discovery of Markers of Exposure Specific to Bites of Lutzomyia longipalpis, the Vector of Leishmania infantum chagasi in Latin America

    Get PDF
    Leishmania parasites are transmitted by the bite of an infected vector sand fly that injects salivary molecules into the host skin during feeding. Certain salivary molecules can produce antibodies and can be used as an indicator of exposure to a vector sand fly and potentially the disease it transmits. Here we identified potential markers of specific exposure to the sand fly Lutzomyia longipalpis, the vector of visceral leishmaniasis in Latin America. Initially, we determined which of the salivary proteins produce antibodies in humans, dogs, and foxes from areas endemic for the disease. To identify potential specific markers of vector exposure, we produced nine different recombinant salivary proteins from Lu. longipalpis and tested for their recognition by individuals exposed to another human-biting sand fly, Lu. intermedia, that transmits cutaneous leishmaniasis and commonly occurs in the same endemic areas as Lu. longipalpis. Two of the nine salivary proteins were recognized only by humans exposed to Lu. longipalpis, suggesting they are immunogenic proteins and may be useful in epidemiological studies. The identification of specific salivary proteins as potential markers of exposure to vector sand flies will increase our understanding of vector–human interaction, bring new insights to vector control, and in some instances act as an indicator for risk of acquiring disease

    Is Aquatic Life Correlated with an Increased Hematocrit in Snakes?

    Get PDF
    Background: Physiological adaptations that allow air-breathing vertebrates to remain underwater for long periods mainly involve modifications of the respiratory system, essentially through increased oxygen reserves. Physiological constraints on dive duration tend to be less critical for ectotherms than for endotherms because the former have lower mass-specific metabolic rates. Moreover, comparative studies between marine and terrestrial ectotherms have yet to show overall distinct physiological differences specifically associated with oxygen reserves. Methodology/Principal Findings: We used phylogenetically informed statistical models to test if habitat affects hematocrit (an indicator of blood oxygen stores) in snakes, a lineage that varies widely in habitat use. Our results indicate that both phylogenetic position (clade) and especially habitat are significant predictors of hematocrit. Our analysis also confirms the peculiar respiratory physiology of the marine Acrochordus granulatus. Conclusion/Significance: Contrary to previous findings, marine snakes have significantly–albeit slightly–elevated hematocrit, which should facilitate increased aerobic dive times. Longer dives could have consequences for foraging, mate searching, and predation risks. Alternatively, but not exclusively, increased Hct in marine species might also help t
    corecore