8 research outputs found

    Constrictive pericarditis is an easily overlooked cause of right heart failure: a case report

    Get PDF
    We describe a patient who suffered progressive right heart failure of unknown aetiology, despite a lengthy series of hospital investigations. Constrictive pericarditis had not been suspected during life, and was ultimately diagnosed as an autopsy finding. The salient clinical features and confirmatory investigations for this unusual disorder are reviewed. The case reminds us to consider the possibility of constrictive pericarditis in patients with unexplained chronic right heart failure, so that prompt investigation and treatment can be instigated

    Acute severe mitral regurgitation: consideration of papillary muscle architecture

    Get PDF
    We present a case of an individual who presented with acute severe mitral regurgitation in the setting of an inferior ST elevation myocardial infarction. Both transthoracic and transesophageal echocardiography demonstrated a posteriorly directed eccentric jet of severe mitral regurgitation with flail anterior mitral valve leaflet attached presumably to the anterior papillary muscle. Intraoperative findings demonstrated rupture of the postero-medial papillary muscle attached via chords to the anterior mitral valve leaflet. This case serves to remind us that both the anterior and posterior leaflets of the mitral valve are attached to both papillary muscle heads. The direction and eccentricity of the mitral regurgitant jet on echocardiography helps to locate the leaflet involved, but not necessarily the coexisting papillary muscle pathology

    Canopy-Forming Seaweeds in Urchin-Dominated Systems in Eastern Canada: Structuring Forces or Simple Prey for Keystone Grazers?

    Get PDF
    Models of benthic community dynamics for the extensively studied, shallow rocky ecosystems in eastern Canada emphasize kelp-urchin interactions. These models may bias the perception of factors and processes that structure communities, for they largely overlook the possible contribution of other seaweeds to ecosystem resilience. We examined the persistence of the annual, acidic (H2SO4), brown seaweed Desmarestia viridis in urchin barrens at two sites in Newfoundland (Canada) throughout an entire growth season (February to October). We also compared changes in epifaunal assemblages in D. viridis and other conspicuous canopy-forming seaweeds, the non-acidic conspecific Desmarestia aculeata and kelp Agarum clathratum. We show that D. viridis can form large canopies within the 2-to-8 m depth range that represent a transient community state termed ‘‘Desmarestia bed’’. The annual resurgence of Desmarestia beds and continuous occurrence of D. aculeata and A. clathratum, create biological structure for major recruitment pulses in invertebrate and fish assemblages (e.g. from quasi-absent gastropods to .150 000 recruits kg21 D. viridis). Many of these pulses phase with temperature driven mass release of acid to the environment and die-off in D. viridis. We demonstrate experimentally that the chemical makeup of D. viridis and A. clathratum helps retard urchin grazing compared to D. aculeata and the highly consumed kelp Alaria esculenta. In light of our findings and related studies, we propose fundamental changes to the study of community shifts in shallow, rocky ecosystems in eastern Canada. In particular, we advocate the need to regard certain canopy-forming seaweeds as structuring forces interfering with top-down processes, rather than simple prey for keystone grazers. We also propose a novel, empirical model of ecological interactions for D. viridis. Overall, our study underscores the importance of studying organisms together with cross-scale environmental variability to better understand the factors and processes that shape marine communities
    corecore