19 research outputs found

    Dynamics of transmission of Plasmodium falciparum by Anopheles arabiensis and the molecular forms M and S of Anopheles gambiae in Dielmo, Senegal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The adaptation of <it>Anopheles gambiae </it>to humans and its environment involves an ongoing speciation process that can be best demonstrated by the existence of various chromosomal forms adapted to different environments and of two molecular forms known as incipient taxonomic units.</p> <p>Methods</p> <p>The aim of this study was to compare the epidemiologic role of <it>Anopheles arabiens </it>is and the molecular forms M and S of <it>Anopheles gambiae </it>in the transmission of Plasmodium in a rural areas of southern Senegal, Dielmo. The sampling of mosquitoes was carried out monthly between July and December 2004, during the rainy season, by human volunteers and pyrethrum spray catches.</p> <p>Results</p> <p><it>Anopheles arabiensis</it>, <it>An. gambiae </it>M and S forms coexisted during the rainy season with a predominance of the M form in September and the peak of density being observed in August for the S form. Similar parity rates were observed in <it>An. arabiensis </it>[70.9%] (n = 86), <it>An</it>. <it>gambiae </it>M form [68.7%] (n = 64) and <it>An</it>. <it>gambiae </it>S form [81.1%] (n = 156). The circumsporozoite protein (CSP) rates were 2.82% (n = 177), 3.17% (n = 315) and 3.45% (n = 405), with the mean anthropophilic rates being 71.4% (n = 14), 86.3% (n = 22) and 91.6% (n = 24) respectively for <it>An</it>. <it>arabiensis </it>and <it>An</it>. <it>gambiae </it>M and S forms. No significant difference was observed either in host preference or in <it>Plasmodium falciparum </it>infection rates between sympatric M and S populations.</p> <p>Conclusion</p> <p>No difference was observed either in host preference or in <it>Plasmodium falciparum </it>infection rates between sympatric M and S populations, but they present different dynamics of population. These variations are probably attributable to different breeding conditions.</p

    The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.</p> <p>Presentation of hypothesis</p> <p>If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor <it>vs </it>outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate.</p> <p>Testing the hypothesis</p> <p>Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude.</p> <p>Implications of the hypothesis</p> <p>Differences in indoor <it>vs </it>outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.</p

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease

    Worldwide migration of amplified insecticide resistance genes in mosquitos

    No full text
    International audienceIn Culex pipiens, overproduction of nonspecific esterases is a common mechanism of resistance to organophosphate insecticides 1,2. The esterases are attributed to closely linked loci named A and B according to substrate preference 3-6, and overproduction of all esterases B is due to gene amplification 7,8. Distribution of electrophoretically distinct variants of overproduced esterases A and B is geographically restricted, with the exception of esterases A2 and B2, always found together throughout at least three continents (Fig. 1). To determine whether this situation is due to migration or to a high mutation rate, esterase B structural genes and their flanking regions were compared by sequence and/or restriction fragment length polymorphism analysis. Whereas structural genes were similar, flanking regions of electrophoretically dissimilar esterases B varied considerably. In contrast, flanking sequences of esterases B2 from different geographical locations (Africa, Asia, North America) were identical. These results suggest that amplified esterase B2 genes originated from an initial event that has subsequently spread organophosphate insecticide resistance by migration

    Testing the unique amplification event and the worldwide migration hypothesis of insecticide resistance genes with sequence data

    No full text
    International audienceIn the mosquito Culex pipiens, over-production of esterases is a common insecticide resistance mechanism. Different alleles at the esterase A and B loci are known to occur in natural populations, as shown by enzyme electrophoresis and RFLP studies on the esterase B locus. Here we analyse the variability of the esterase A locus at the nucleotide level in mosquitoes possessing or lacking over-produced esterase A. A surprisingly high level of nucleotide polymorphism is found in coding and noncoding regions, and the extent of polymorphism detected is higher than that previously described for the most polymorphic loci in Drosophila. We also show that eight strains from different localities (Africa, America, Asia) that possess the over-produced esterase A2 share the same nucleotide sequence at the esterase A locus, strongly supporting the evolutionary scenario of a unique event of amplification of this gene followed by dispersal through migration rather than the occurrence of multiple independent mutational events of the gene

    Do Candidates’ Ethnic Background and Gender Matter?:An Experimental Approach

    No full text
    This chapter deals with the little analyzed (in the European context) impact of MPs’ ethnic and gender characteristics on voter choice by drawing on survey experiment data. The analysis shows mixed results. Although candidate gender does not seem to have any impact on the likelihood of supporting parliamentary candidates, having specific ethnic backgrounds can be an electoral burden. However, as with previous studies, the effect depends on voters’ ideological positions. The analysis also shows that, regardless of a candidate’s socio-demographic characteristics, it is party affiliation that matters most for voter choice in both countries. These are noteworthy results particularly for the case of France with its well-known candidate-centered electoral system
    corecore