5 research outputs found
Simultaneous Activation of Complement and Coagulation by MBL-Associated Serine Protease 2
The complement system is an important immune mechanism mediating both recognition and elimination of foreign bodies. The lectin pathway is one pathway of three by which the complement system is activated. The characteristic protease of this pathway is Mannan-binding lectin (MBL)-associated serine protease 2 (MASP2), which cleaves complement proteins C2 and C4. We present a novel and alternative role of MASP2 in the innate immune system. We have shown that MASP2 is capable of promoting fibrinogen turnover by cleavage of prothrombin, generating thrombin. By using a truncated active form of MASP2 as well as full-length MASP2 in complex with MBL, we have shown that the thrombin generated is active and can cleave both factor XIII and fibrinogen, forming cross-linked fibrin. To explore the biological significance of these findings we showed that fibrin was covalently bound on a bacterial surface to which MBL/MASP2 complexes were bound. These findings suggest that, as has been proposed for invertebrates, limited clotting may contribute to the innate immune response
Disease-associated glycosylated molecular variants of human C-reactive protein activate complement-mediated hemolysis of erythrocytes in tuberculosis and Indian visceral leishmaniasis
Human C-reactive protein (CRP), as a mediator
of innate immunity, removed damaged cells by activating
the classical complement pathway. Previous studies have
successfully demonstrated that CRPs are differentially induced
as glycosylated molecular variants in certain pathological
conditions. Affinity-purified CRPs from two most
prevalent diseases in India viz. tuberculosis (TB) and
visceral leishmaniasis (VL) have differential glycosylation
in their sugar composition and linkages. As anemia is a
common manifestation in TB and VL, we assessed the
contributory role of glycosylated CRPs to influence hemolysis
via CRP-complement-pathway as compared to
healthy control subjects. Accordingly, the specific binding
of glycosylated CRPs with erythrocytes was established by
flow-cytometry and ELISA. Significantly, deglycosylated
CRPs showed a 7â8-fold reduced binding with erythrocytes
confirming the role of glycosylated moieties. Scatchard
analysis revealed striking differences in the apparent binding constants (104â105Mâ1) and number of binding
sites (106â107sites/erythrocyte) for CRP on patientsâ erythrocytes
as compared to normal. Western blotting along with
immunoprecipitation analysis revealed the presence of
distinct molecular determinants on TB and VL erythrocytes
specific to disease-associated CRP. Increased fragility, hydrophobicity
and decreased rigidity of diseased-erythrocytes
upon binding with glycosylated CRP suggested membrane
damage. Finally, the erythrocyte-CRP binding was shown to
activate the CRP-complement-cascade causing hemolysis,
even at physiological concentration of CRP (10ÎŒg/ml).
Thus, it may be postulated that CRP have a protective role
towards the clearance of damaged-erythrocytes in these two
disease