39 research outputs found

    Some environmental factors influencing phytoplankton in the Southern Ocean around South Georgia

    Full text link
    Data on phytoplankton and zooplankton biomass, and physical and chemical variables, are combined with a published multivariate description of diatom species composition to interpret variation within an area around South Georgia surveyed during an austral summer. Large-scale species distributions could be equated to the different water masses which reflected the interaction of the Antarctic Circumpolar Current with the island and the Scotia Ridge. Small-scale factors were found to act at an interstation scale and imposed local variation on the biogeographic pattern. Nutrient depletion could be related to phytoplankton biomass but no single inorganic nutrient of those measured (NO 3 −N, PO 4 −P and silica) could be identified as important. The ratio Si:P appeared to be more important as an ecological factor. The impact of grazing by krill and other zooplankton could only be resolved as differences in phytoplankton biomass and phaeopigment content. Diatom species composition showed a relation to local krill abundance very different from that suggested by published studies, but could be explained as the effect of earlier grazing outside the study area. The effects of vertical mixing could not account for interstation differences as pycnocline depth was uniformly greater than euphotic depth, and vertical stability very low. Some comparison was made with data collected in 1926–31 by the Discovery Investigations. Significant differences in the distribution of certain taxa such as Chaetoceros criophilum and C. socialis were traced to major differences in hydrology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46983/1/300_2004_Article_BF00443379.pd

    Intestinal microbiota in human health and disease: the impact of probiotics

    Get PDF
    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis

    Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management

    Get PDF
    Periprosthetic osteolysis is a serious complication of total hip replacement (THR) in the medium to long term. Although often asymptomatic, osteolysis can lead to prosthesis loosening and periprosthetic fracture. These complications cause significant morbidity and require complex revision surgery. Here, we review advances in our understanding of the cell and tissue response to particles produced by wear of the articular and non-articular surfaces of prostheses. We discuss the molecular and cellular regulators of osteoclast formation and bone resorptive activity, a better understanding of which may lead to pharmacological treatments for periprosthetic osteolysis. We describe the development of imaging techniques for the detection and measurement of osteolysis around THR prostheses, which enable improved clinical management of patients, provide a means of evaluating outcomes of non-surgical treatments for periprosthetic osteolysis, and assist in pre-operative planning for revision surgery. Finally, there have been advances in the materials used for bearing surfaces to minimise wear, and we review the literature regarding the performance of these new materials to date.Donald W. Howie, Susan D. Neale, David R. Haynes, Oksana T. Holubowycz, Margaret A. McGee, Lucian B. Solomon, Stuart A. Callary, Gerald J. Atkins, David M. Findla

    Intra-section analysis of human coronary arteries reveals a potential role for micro- calcifications in macrophage recruitment in the early stage of atherosclerosis

    Get PDF
    Background\u3cbr/\u3e\u3cbr/\u3eVascular calcification is associated with poor cardiovascular outcome. Histochemical analysis of calcification and the expression of proteins involved in mineralization are usually based on whole section analysis, thereby often ignoring regional differences in atherosclerotic lesions. At present, limited information is available about factors involved in the initiation and progression of atherosclerosis.\u3cbr/\u3e\u3cbr/\u3eAim of This Study\u3cbr/\u3e\u3cbr/\u3eThis study investigates the intra-section association of micro-calcifications with markers for atherosclerosis in randomly chosen section areas of human coronary arteries. Moreover, the possible causal relationship between calcifying vascular smooth muscle cells and inflammation was explored in vitro.\u3cbr/\u3e\u3cbr/\u3eTechnical Approach\u3cbr/\u3e\u3cbr/\u3eTo gain insights into the pathogenesis of atherosclerosis, we performed analysis of the distribution of micro-calcifications using a 3-MeV proton microbeam. Additionally, we performed systematic analyses of 30 to 40 regions of 12 coronary sections obtained from 6 patients including histology and immuno-histochemistry. Section areas were classified according to CD68 positivity. In vitro experiments using human vascular smooth muscle cells (hVSMCs) were performed to evaluate causal relationships between calcification and inflammation.\u3cbr/\u3e\u3cbr/\u3eResults\u3cbr/\u3e\u3cbr/\u3eFrom each section multiple areas were randomly chosen and subsequently analyzed. Depositions of calcium crystals at the micrometer scale were already observed in areas with early pre-atheroma type I lesions. Micro-calcifications were initiated at the elastica interna concomitantly with upregulation of the uncarboxylated form of matrix Gla-protein (ucMGP). Both the amount of calcium crystals and ucMGP staining increased from type I to IV atherosclerotic lesions. Osteochondrogenic markers BMP-2 and osteocalcin were only significantly increased in type IV atheroma lesions, and at this stage correlated with the degree of calcification. From atheroma area type III onwards a considerable number of CD68 positive cells were observed in combination with calcification, suggesting a pro-inflammatory effect of micro-calcifications. In vitro, invasion assays revealed chemoattractant properties of cell-culture medium of calcifying vascular smooth muscle cells towards THP-1 cells, which implies pro-inflammatory effect of calcium deposits. Additionally, calcifying hVSMCs revealed a pro-inflammatory profile as compared to non-calcifying hVSMCs.\u3cbr/\u3e\u3cbr/\u3eConclusion\u3cbr/\u3e\u3cbr/\u3eOur data indicate that calcification of VSMCs is one of the earliest events in the genesis of atherosclerosis, which strongly correlates with ucMGP staining. Our findings suggest that loss of calcification inhibitors and/or failure of inhibitory capacity is causative for the early precipitation of calcium, with concomitant increased inflammation followed by osteochondrogenic transdifferentiation of VSMCs.\u3cbr/\u3
    corecore