40 research outputs found

    Interaction of quasilocal harmonic modes and boson peak in glasses

    Full text link
    The direct proportionality relation between the boson peak maximum in glasses, ωb\omega_b, and the Ioffe-Regel crossover frequency for phonons, ωd\omega_d, is established. For several investigated materials ωb=(1.5±0.1)ωd\omega_b = (1.5\pm 0.1)\omega_d. At the frequency ωd\omega_d the mean free path of the phonons ll becomes equal to their wavelength because of strong resonant scattering on quasilocal harmonic oscillators. Above this frequency phonons cease to exist. We prove that the established correlation between ωb\omega_b and ωd\omega_d holds in the general case and is a direct consequence of bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur

    On the Crustal Matter of Magnetars

    Full text link
    We have investigated some of the properties of dense sub-nuclear matter at the crustal region (both the outer crust and the inner crust region) of a magnetar. The relativistic version of Thomas-Fermi (TF) model is used in presence of strong quantizing magnetic field for the outer crust matter. The compressed matter in the outer crust, which is a crystal of metallic iron, is replaced by a regular array of spherically symmetric Wigner-Seitz (WS) cells. In the inner crust region, a mixture of iron and heavier neutron rich nuclei along with electrons and free neutrons has been considered. Conventional Harrison-Wheeler (HW) and Bethe-Baym-Pethick (BBP) equation of states are used for the nuclear mass formula. A lot of significant changes in the characteristic properties of dense crustal matter, both at the outer crust and the inner crust, have been observed.Comment: 29 pages REVTEX manuscript, 15 .eps figures (included

    Eu-O (Europium-Oxygen)

    No full text

    Handling conjunctions in named entities

    No full text
    Although the literature contains reports of very high accuracy figures for the recognition of named entities in text, there are still some named entity phenomena that remain problematic for existing text processing systems. One of these is the ambiguity of conjunctions in candidate named entity strings, an all-too-prevalent problem in corporate and legal documents. In this paper, we distinguish four uses of the conjunction in these strings, and explore the use of a supervised machine learning approach to conjunction disambiguation trained on a very limited set of ‘name internal’ features that avoids the need for expensive lexical or semantic resources. We achieve 84% correctly classified examples using k-fold evaluation on a data set of 600 instances. Further improvements are likely to require the use of wider domain knowledge and name external features.12 page(s
    corecore