16 research outputs found

    Duration and severity of Medieval drought in the Lake Tahoe Basin

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Quaternary Science Reviews 30 (2011): 3269-3279, doi:10.1016/j.quascirev.2011.08.015.Droughts in the western U.S. in the past 200 years are small compared to several megadroughts that occurred during Medieval times. We reconstruct duration and magnitude of extreme droughts in the northern Sierra Nevada from hydroclimatic conditions in Fallen Leaf Lake, California. Stands of submerged trees rooted in situ below the lake surface were imaged with sidescan sonar and radiocarbon analysis yields an age estimate of ∼1250 AD. Tree-ring records and submerged paleoshoreline geomorphology suggest a Medieval low-stand of Fallen Leaf Lake lasted more than 220 years. Over eighty more trees were found lying on the lake floor at various elevations above the paleoshoreline. Water-balance calculations suggest annual precipitation was less than 60% normal from late 10th century to early 13th century AD. Hence, the lake’s shoreline dropped 40–60 m below its modern elevation. Stands of pre-Medieval trees in this lake and in Lake Tahoe suggest the region experienced severe drought at least every 650–1150 years during the mid- and late-Holocene. These observations quantify paleo-precipitation and recurrence of prolonged drought in the northern Sierra Nevada.Support for this work was provided by US Geological Survey/ Desert Research Institute under Project ID# 2003NV39B, a Geological Society of America graduate research grant and the IRIS undergraduate internship program. F. Biondiwas supported, in part by NSF Cooperative Agreement EPS-0814372 to the Nevada System of Higher Education. N. Driscoll was supported in part by a grant from CA DWR

    Strange Hadronic Loops of the Proton: A Quark Model Calculation

    Get PDF
    Nontrivial qqˉq \bar q sea effects have their origin in the low-Q2Q^2 dynamics of strong QCD. We present here a quark model calculation of the contribution of ssˉs \bar s pairs arising from a {\it complete} set of OZI-allowed strong Y∗K∗Y^*K^* hadronic loops to the net spin of the proton, to its charge radius, and to its magnetic moment. The calculation is performed in an ``unquenched quark model" which has been shown to preserve the spectroscopic successes of the naive quark model and to respect the OZI rule. We speculate that an extension of the calculation to the nonstrange sea will show that most of the ``missing spin" of the proton is in orbital angular momenta.Comment: revtex, 34 pages, 4 figure

    Masthead

    No full text

    Masthead

    No full text
    corecore