795 research outputs found

    Shaping a high-mass star-forming cluster through stellar feedback. The case of the NGC 7538 IRS 1-3 complex

    Full text link
    Context: NGC 7538 IRS 1-3 is a high-mass star-forming cluster with several detected dust cores, infrared sources, (ultra)compact HII_{\rm II} regions, molecular outflows, and masers. In such a complex environment, important interactions and feedback among the embedded objects are expected to play a major role in the evolution of the region. Aims: We study the dust, kinematic, and polarimetric properties of the NGC 7538 IRS 1-3 region to investigate the role of the different forces interplaying in the formation and evolution of high-mass star-forming clusters. Methods: We perform SMA high angular resolution observations at 880 μ\mum with the compact configuration. We develop the RATPACKS code to generate synthetic velocity cubes from models of choice to be compared to the observational data. We develop the "mass balance" analysis to quantify the stability against gravitational collapse accounting for all the energetics at core scales. Results: We detect 14 dust cores from 3.5 MM_{\odot} to 37 MM_{\odot} arranged in two larger scale structures: a central bar and a filamentary spiral arm. The spiral arm presents large scale velocity gradients in H13^{13}CO+^+ 4-3 and C17^{17}O 3-2, and magnetic field segments well aligned to the dust main axis. The velocity gradient is well reproduced by a spiral arm expanding at 9 km s1^{-1} with respect to the central core MM1, which is known to power a large precessing outflow. The energy of the outflow is comparable with the spiral arm kinetic energy, which is dominant over gravitational and magnetic energies. In addition, the dynamical ages of the outflow and spiral arm are comparable. ... (Full abstract in the pdf version)Comment: 15 pages, 9 figures, 4 tables. Accepted for publication in A&

    The magnetic field in the NGC 2024 FIR 5 dense core

    Get PDF
    We used the Submillimeter Array (SMA) to observe the thermal polarized dust emission from the protostellar source NGC 2024 FIR 5. The polarized emission outlines a partial hourglass morphology for the plane-of-sky component of the core magnetic field. Our data are consistent with previous BIMA maps, and the overall magnetic field geometries obtained with both instruments are similar. We resolve the main core into two components, FIR 5A and FIR 5B. A possible explanation for the asymmetrical field lies in depolarization effects due to the lack of internal heating from FIR 5B source, which may be in a prestellar evolutionary state. The field strength was estimated to be 2.2 mG, in agreement with previous BIMA data. We discuss the influence of a nearby H{\sc ii} region over the field lines at scales of 0.01\sim 0.01 pc. Although the hot component is probably compressing the molecular gas where the dust core is embedded, it is unlikely that the radiation pressure exceeds the magnetic tension. Finally, a complex outflow morphology is observed in CO (3 \rightarrow 2) maps. Unlike previous maps, several features associated with dust condensations other than FIR 5 are detected.Comment: 48 pages, 12 figures, accepted for publication in The Astrophysical Journa

    Low-density lipoprotein cholesterol lowering therapies: what is on the horizon?

    Get PDF
    Elevated low-density lipoprotein cholesterol (LDL-C) levels are associated with an increased risk for cardiovascular disease (CVD). Statins have been the cornerstone of lipid therapy to lower LDL-C for the past two decades, but despite significant clinical efficacy in a majority of patients, a large residual risk remains for the development of initial or recurrent atherosclerotic CVD. In addition, owing to the side-effects, a significant percentage of patients cannot tolerate any statin dose or a high enough statin dose. Thus, novel therapeutic agents are currently being developed to lower LDL-C levels further. This review will highlight these novel therapeutic agents including antisense oligonucleotides focused on apolipoprotein B, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and microsomal triglyceride transfer protein inhibitors. For each therapeutic class, an overview of mechanism of action, pharmacokinetic data, and efficacy/safety evidence will be discussed

    Helical Magnetic Fields in the NGC1333 IRAS 4A Protostellar Outflows

    Full text link
    We present Submillimeter Array (SMA) polarization observations of the CO JJ = 3--2 line toward the NGC1333 IRAS 4A. The CO Stokes II maps at an angular resolution of \sim1\arcsec reveal two bipolar outflows from the binary sources of the NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at \sim 20\arcdeg inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of \sim2\farcs3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly from an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind-envelope interaction in the wind-driven outflows. The CO data reveal a PA of \sim 30\arcdeg deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to \sim 10\arcdeg deflection of the outflows by means of Lorenz force.Comment: 19 pages, 9 figures, ApJ Accepte

    Detection of a Magnetized Disk around a Very Young Protostar

    Full text link
    We present subarcsecond resolution polarimetric observations of the 878 mum thermal dust continuum emission obtained with the Submillimeter Array (SMA) towards the IRAS 16293-2422 protostellar binary system. We report the detection of linearly polarized dust emission arising from the circumstellar disk associated with the IRAS 16293-2422 B protostar. The fractional polarization of ~1.4$% is only slightly lower than that expected from theoretical calculations in such disks. The magnetic field structure on the plane of the sky derived from the dust polarization suggests a complex magnetic field geometry in the disk, possibly associated with a rotating disk that is wrapping the field lines as expected from the simulations. The polarization around IRAS 16293-2422 A at subarcsecond angular resolution is only marginally detected.Comment: 6 pages, 3 figures, The Astrophysical Journal Letters, accepte

    A call for innovations tht change the (organic) world

    Get PDF
    Recent developments in organic farming and consumption show dynamic growth in markets; new uptake of Organic Agriculture by farmers, however, has been slow. Hindrances appear to be production problems or lack of trust by the farmers that organic methods can solve farming problems, such as fertilization, plant protection, animal health, efficient use of workforce, marketing diversity etc. While in some cases those problems can be solved through learning existing and regionally practiced methods, innovations are imperative to make organic farming competitive and a viable alternative farming system. OFIA, the Organic Farming Innovation Award, part of the Organic World Congress, highlights outstanding innovations and publishes priorities for innovative research
    corecore