32,264 research outputs found

    Microscopic approach to the proton asymmetry in the non-mesonic weak decay of Lambda-hypernuclei

    Full text link
    The non--mesonic weak decay of polarized Λ\Lambda-hypernuclei is studied with a microscopic diagrammatic formalism in which one- and two-nucleon induced decay mechanisms, Λ⃗N→NN\vec{\Lambda} N \to NN and Λ⃗NN→NNN\vec{\Lambda} NN \to NNN, are considered together with (and on the same ground of) nucleon final state interactions. We adopt a nuclear matter formalism extended to finite nuclei via the local density approximation. Our approach adopts different one-meson-exchange weak transition potentials, while the strong interaction effects are accounted for by a Bonn nucleon-nucleon interaction. We also consider the two-pion-exchange effect in the weak transition potential. Both the two-nucleon induced decay mechanism and the final state interactions reduce the magnitude of the asymmetry. The quantum interference terms considered in the present microscopic approach give rise to an opposite behavior of the asymmetry with increasing energy cuts to that observed in models describing the nucleon final state interactions semi-classically via the intranuclear cascade code. Our results for the asymmetry parameter in Λ12^{12}_{\Lambda}C obtained with different potential models are consistent with the asymmetry measured at KEK

    Explicit minimal Scherk saddle towers of arbitrary even genera in R3\R^3

    Get PDF
    Starting from works by Scherk (1835) and by Enneper-Weierstra\ss \ (1863), new minimal surfaces with Scherk ends were found only in 1988 by Karcher (see \cite{Karcher1,Karcher}). In the singly periodic case, Karcher's examples of positive genera had been unique until Traizet obtained new ones in 1996 (see \cite{Traizet}). However, Traizet's construction is implicit and excludes {\it towers}, namely the desingularisation of more than two concurrent planes. Then, new explicit towers were found only in 2006 by Martin and Ramos Batista (see \cite{Martin}), all of them with genus one. For genus two, the first such towers were constructed in 2010 (see \cite{Valerio2}). Back to 2009, implicit towers of arbitrary genera were found in \cite{HMM}. In our present work we obtain {\it explicit} minimal Scherk saddle towers, for any given genus 2k2k, k≥3k\ge3

    Weak decays of medium and heavy Lambda-hypernuclei

    Full text link
    We have made a new evaluation of the Lambda decay width in nuclear matter within the Propagator Method. Through the Local Density Approximation it is possible to obtain results in finite nuclei. We have also studied the dependence of the widths on the N-N and Lambda-N short range correlations. Using reasonable values for the parameters that control these correlations, as well as realistic nuclear densities and Lambda wave functions, we reproduce, for the first time, the experimental non-mesonic widths in a wide range of mass numbers (from medium to heavy hypernuclei).Comment: 22 pages, including 5 figure

    WISE morphological study of Wolf-Rayet nebulae

    Full text link
    We present a morphological study of nebulae around Wolf-Rayet (WR) stars using archival narrow-band optical and Wide-field Infrared Survey Explorer (WISE) infrared images. The comparison among WISE images in different bands and optical images proves to be a very efficient procedure to identify the nebular emission from WR nebulae, and to disentangle it from that of the ISM material along the line of sight. In particular, WR nebulae are clearly detected in the WISE W4 band at 22 μ\mum. Analysis of available mid-IR Spitzer spectra shows that the emission in this band is dominated by thermal emission from dust spatially coincident with the thin nebular shell or most likely with the leading edge of the nebula. The WR nebulae in our sample present different morphologies that we classified into well defined WR bubbles (bubble B{\cal B}-type nebulae), clumpy and/or disrupted shells (clumpy/disrupted C{\cal C}-type nebulae), and material mixed with the diffuse medium (mixed M{\cal M}-type nebulae). The variety of morphologies presented by WR nebulae shows a loose correlation with the central star spectral type, implying that the nebular and stellar evolutions are not simple and may proceed according to different sequences and time-lapses. We report the discovery of an obscured shell around WR35 only detected in the infrared.Comment: 11 pages, 6 figures, plus 23 appendix figures; to appear in Astronomy and Astrophysic
    • …
    corecore