28,941 research outputs found

    Clear detection of dusty torus signatures in a Weak-Line Radio Galaxy: the case of PKS 0043-42

    Get PDF
    We report the clearest detection to date of dusty torus signatures in a Weak-Line Radio Galaxy (WLRG). The deep Spitzer InfraRed Spectrograph (IRS) rest-frame mid-infrared (MIR) spectrum of the WLRG PKS 0043-42 (z=0.116) shows a clear spectral turnover at wavelengths longer than ~20 micron suggestive of warm dust, as well as a 9.7 micron silicate absorption feature. In addition, the hard X-ray results, based on Chandra data, strongly support a picture in which PKS 0043-42 has a torus and accretion disc more typical of Strong-Line Radio Galaxies (SLRGs). The MIR and X-ray spectra are markedly different from those of other WLRGs at similar redshifts, and here we show that the former can be successfully fitted with clumpy torus models with parameters characteristic of Type-2 AGN tori: close to edge-on (i=74 deg) and relatively broad (torus angular width=60 deg), with an outer radius of 2 pc, hydrogen column density ~1.6x10^(23) cm^(-2), and AGN bolometric luminosity ~1.6x10^(44) erg s^(-1). The presence of a compact torus in PKS 0043-42 provides evidence that this WLRG is fuelled by cold, rather than hot, gas accretion. We suggest that WLRGs are a diverse population, and PKS 0043-42 may represent a type of radio galaxy in which the AGN activity has been recently re-triggered as a consequence of intermittent gas supply, or in which the covering factor of the Narrow-Line Region (NLR) clouds is relatively low.Comment: 7 pages, 6 figures, 1 table. Accepted by MNRA

    A geometric technique to generate lower estimates for the constants in the Bohnenblust--Hille inequalities

    Full text link
    The Bohnenblust--Hille (polynomial and multilinear) inequalities were proved in 1931 in order to solve Bohr's absolute convergence problem on Dirichlet series. Since then these inequalities have found applications in various fields of analysis and analytic number theory. The control of the constants involved is crucial for applications, as it became evident in a recent outstanding paper of Defant, Frerick, Ortega-Cerd\'{a}, Ouna\"{\i}es and Seip published in 2011. The present work is devoted to obtain lower estimates for the constants appearing in the Bohnenblust--Hille polynomial inequality and some of its variants. The technique that we introduce for this task is a combination of the Krein--Milman Theorem with a description of the geometry of the unit ball of polynomial spaces on 2\ell^2_\infty.Comment: This preprint does no longer exist as a single manuscript. It is now part of the preprint entitled "The optimal asymptotic hypercontractivity constant of the real polynomial Bohnenblust-Hille inequality is 2" (arXiv reference 1209.4632

    Hamming distance and mobility behavior in generalized rock-paper-scissors models

    Full text link
    This work reports on two related investigations of stochastic simulations which are widely used to study biodiversity and other related issues. We first deal with the behavior of the Hamming distance under the increase of the number of species and the size of the lattice, and then investigate how the mobility of the species contributes to jeopardize biodiversity. The investigations are based on the standard rules of reproduction, mobility and predation or competition, which are described by specific rules, guided by generalization of the rock-paper-scissors game, valid in the case of three species. The results on the Hamming distance indicate that it engenders universal behavior, independently of the number of species and the size of the square lattice. The results on the mobility confirm the prediction that it may destroy diversity, if it is increased to higher and higher values.Comment: 7 pages, 9 figures. To appear in EP

    Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    Get PDF
    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-SS chains with S=1/2S=1/2, 11 and 3/23/2.Comment: 20 pages, 12 figure
    corecore