84 research outputs found

    Jet Quenching in the Opposite Direction of a Tagged Photon in High-Energy Heavy-Ion Collisions

    Get PDF
    We point out that events associated with large ETE_T direct photons in high-energy heavy-ion collisions can be used to study jet energy loss in dense matter. In such events, the pTp_T spectrum of charged hadrons from jet fragmentation in the opposite direction of the tagged photon is estimated to be well above the background which can be reliably subtracted at moderately large pTp_T. We demonstrate that comparison between the extracted fragmentation function in AAAA and pppp collisions can be used to determine the jet energy loss and the interaction mean-free-path in the dense matter produced in high-energy heavy-ion collisions.Comment: 4 pages in RevTex twocolumn with embedded psfigure

    A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites

    Get PDF
    The present article considers the linear static analysis of composite shell structures with double-curvature geometry by means of a shell finite element with variable through-the-thickness kinematic. The refined models used are grouped in the Unified Formulation by Carrera (CUF) and they permit the distribution of displacements and stresses along the thickness of the multilayered shell to be accurately described. The shell element has nine nodes and the mixed interpolation of tensorial components (MITC) method is used to contrast the membrane and shear locking phenomenon. The governing equations are derived from the principle of virtual displacement (PVD) and the finite element method (FEM) is employed to solve them. Cross-ply spherical shells with simply-supported edges and subjected to bi-sinusoidal pressure are analyzed. Various laminations, thickness ratios, and curvature ratios are considered. The results, obtained with different theories contained in the CUF, are compared with both the elasticity solutions given in the literature and the analytical solutions obtained using the CUF and the Navier's method. From the analysis, one can conclude that the shell element based on the CUF is very efficient and its use is mandatory with respect to the classical models in the study of composite structures. Finally, shells with different lamination, boundary conditions, and loads are also analyzed using high-order layer-wise theories in order to provide FEM benchmark solution

    Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice

    Get PDF
    Several vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies

    Strategic Behavior in the German Balancing Energy Mechanism: Incentives, Evidence, Costs and Solutions

    Full text link
    This paper investigates the incentives market participants have in the German electricity balancing mechanism. Strategic over- and undersupply positions are the result of existing stochastic arbitrage opportunities between the spot market and the balancing mechanism. This strategic behavior can be clearly identified in aggregate market data. These structural imbalances increase the need for reserve capacity, raise system security concerns, and thus burden significant cost on the customers. More effective market designs include changes in the balancing mechanism, the reserve capacity and the intraday spot markets

    Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination

    Get PDF
    Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways

    Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination

    Get PDF
    Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways

    Adenoviral vectored vaccination protects against Crimean-Congo Haemorrhagic Fever disease in a lethal challenge model.

    Get PDF
    BACKGROUND: The tick-borne bunyavirus, Crimean-Congo Haemorrhagic Fever virus (CCHFV), can cause severe febrile illness in humans and has a wide geographic range that continues to expand due to tick migration. Currently, there are no licensed vaccines against CCHFV for widespread usage. METHODS: In this study, we describe the preclinical assessment of a chimpanzee adenoviral vectored vaccine (ChAdOx2 CCHF) which encodes the glycoprotein precursor (GPC) from CCHFV. FINDINGS: We demonstrate here that vaccination with ChAdOx2 CCHF induces both a humoral and cellular immune response in mice and 100% protection in a lethal CCHF challenge model. Delivery of the adenoviral vaccine in a heterologous vaccine regimen with a Modified Vaccinia Ankara vaccine (MVA CCHF) induces the highest levels of CCHFV-specific cell-mediated and antibody responses in mice. Histopathological examination and viral load analysis of the tissues of ChAdOx2 CCHF immunised mice reveals an absence of both microscopic changes and viral antigen associated with CCHF infection, further demonstrating protection against disease. INTERPRETATION: There is the continued need for an effective vaccine against CCHFV to protect humans from lethal haemorrhagic disease. Our findings support further development of the ChAd platform expressing the CCHFV GPC to seek an effective vaccine against CCHFV. FUNDING: This research was supported by funding from the Biotechnology and Biological Sciences Research Council (UKRI-BBSRC) [BB/R019991/1 and BB/T008784/1]

    Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial.

    Get PDF
    BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-Îł enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen

    Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses

    Get PDF
    The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal coronavirus disease (COVID-19) outcomes is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses, and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to intensive care units (ICU) with fatal COVID-19 outcomes, but not in individuals with non-fatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to ICU with fatal and non-fatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an original antigenic sin type-response
    • 

    corecore