40 research outputs found

    The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

    Get PDF
    BACKGROUND: The Eight-Twenty-One (ETO) nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16) and myeloid translocation Gene-Related protein 1 (MTGR1). By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function.RESULTS: A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells.CONCLUSIONS: We demonstrate that the GATA-1 transcription factor binds and transactivates the ETO proximal promoter in an erythroid/megakaryocytic-specific manner. Thus, trans-acting factors that are essential in erythroid/megakaryocytic differentiation govern ETO expression

    Germline variants at SOHLH2 influence multiple myeloma risk

    Get PDF
    Funding Information: This work was supported by grants from the Knut and Alice Wallenberg Foundation (2012.0193 and 2017.0436), the Swedish Research Council (2017-02023), the Swedish Cancer Society (2017/265), Stiftelsen Borås Forsknings-och Utvecklingsfond mot Cancer, the Nordic Cancer Union (R217-A13329-18-S65), EU-MSCA-COFUND 754299 CanFaster, the Myeloma UK and Cancer Research UK (C1298/A8362), a Jacquelin Forbes-Nixon Fellowship, and Mr. Ralph Stockwell. We thank Ellinor Johnsson and Anna Collin for their assistance. We are indebted to the clinicians and patients who contributed samples. Open access funding provided by Lund University. Publisher Copyright: © 2021, The Author(s).Multiple myeloma (MM) is caused by the uncontrolled, clonal expansion of plasma cells. While there is epidemiological evidence for inherited susceptibility, the molecular basis remains incompletely understood. We report a genome-wide association study totalling 5,320 cases and 422,289 controls from four Nordic populations, and find a novel MM risk variant at SOHLH2 at 13q13.3 (risk allele frequency = 3.5%; odds ratio = 1.38; P = 2.2 × 10−14). This gene encodes a transcription factor involved in gametogenesis that is normally only weakly expressed in plasma cells. The association is represented by 14 variants in linkage disequilibrium. Among these, rs75712673 maps to a genomic region with open chromatin in plasma cells, and upregulates SOHLH2 in this cell type. Moreover, rs75712673 influences transcriptional activity in luciferase assays, and shows a chromatin looping interaction with the SOHLH2 promoter. Our work provides novel insight into MM susceptibility.Peer reviewe

    Functional dissection of inherited non-coding variation influencing multiple myeloma risk

    Get PDF
    Funding Information: This work was supported by grants from the Knut and Alice Wallenberg Foundation (2012.0193 and 2017.0436), the Swedish Research Council (2017-02023 and 2018-00424), the Swedish Cancer Society (2017/265), the Nordic Cancer Union (R217-A13329-18-S65), Arne and Inga-Britt Lundberg’s Stiftelse (2017-0055), European Research Council (EU-MSCA-COFUND 754299 CanFaster), Myeloma UK and Cancer Research UK (C1298/A8362), The National Institute of Health (R01 DK103794 and R01HL146500), the New York Stem Cell Foundation, a gift from the Lodish Family to Boston Children’s Hospital, and Mr. Ralph Stockwell. We thank Ellinor Johnsson for her assistance between 2011 and 2020. We are indebted to the patients who participated in the study. Publisher Copyright: © 2022, The Author(s).Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.Peer reviewe

    MPRAscore : robust and non-parametric analysis of massively parallel reporter assays

    No full text
    MOTIVATION: Massively parallel reporter assays (MPRA) enable systematic screening of DNA sequence variants for effects on transcriptional activity. However, convenient analysis tools are still needed. RESULTS: We introduce MPRAscore, a novel tool to infer allele-specific effects on transcription from MPRA data. MPRAscore uses a weighted, variance-regularized method to calculate variant effect sizes robustly, and a permutation approach to test for significance without assuming normality or independence. AVAILABILITY AND IMPLEMENTATION: Source code (C++), precompiled binaries and data used in the paper at https://github.com/abhisheknrl/MPRAscore and https://www.ncbi.nlm.nih.gov/bioproject/PRJNA554195. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Cross-Linker Mediated Biofunctionalization of Single Wall Carbon Nanotubes with Glucose Oxidase

    No full text
    Covalent attachment of biomolecules to the surface of carbon nanotubes provides an architecture for three dimensional arrays of sensor molecules (i.e. enzymes) for potential biosensor application. Present work reports a simple two-step reaction for immobilization of glucose oxidase on single walled carbon nanotubes (SWCNTs). This method is as efficient as conventional methods for biofunctionalization of SWCNT with enzyme. Moreover, it overcomes structural losses of SWCNTs and minimizes reaction steps involved in this process previously. Cross linkers 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydrosuccinimide were employed for omitting the acylation step through formation of stable intermediates. The inference of efficacy of the present methodology is based on the final outcome of the reaction, in terms of the number of glucose oxidase molecules immobilized on SWCNT. Biofunctionalization of SWCNTs was characterized by fourier transform infra red spectroscopy, ultraviolet-visible spectroscopy, elemental analysis and atomic force microscop

    Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1.

    No full text
    The myeloid translocation gene 16 (MTG16) co-repressor down regulates expression of multiple glycolytic genes, which are targets of the hypoxia-inducible factor 1 (HIF1) heterodimer transcription factor that is composed of oxygen-regulated labile HIF1α and stable HIF1β subunits. For this reason, we investigated whether MTG16 might regulate HIF1 negatively contributing to inhibition of glycolysis and stimulation of mitochondrial respiration. A doxycycline Tet-On system was used to control levels of MTG16 in B-lymphoblastic Raji cells. Results from co-association studies revealed MTG16 to interact with HIF1α. The co-association required intact N-terminal MTG16 residues including Nervy Homology Region 1 (NHR1). Furthermore, electrophoretic mobility shift assays demonstrated an association of MTG16 with hypoxia response elements (HREs) in PFKFB3, PFKFB4 and PDK1 promoters in-vitro. Results from chromatin immunoprecipitation assays revealed co-occupancy of these and other glycolytic gene promoters by HIF1α, HIF1β and MTG16 in agreement with possible involvement of these proteins in regulation of glycolytic target genes. In addition, MTG16 interacted with prolyl hydroxylase D2 and promoted ubiquitination and proteasomal degradation of HIF1α. Our findings broaden the area of MTG co-repressor functions and reveal MTG16 to be part of a protein complex that controls the levels of HIF1α

    Effect of Humidity on Structural Distortion and Conductance of DNA Nanowire

    No full text
    One of the intensively explored domains of the current bionanotechnology is the focus for search of nano-materials intended to develop high throughput electronic devices. Among the questioned physical materials deoxyribonucleic acid (DNA) has given promising background to be explored as potential nanowire material for aspiring nano-devices. The distinguished characteristics of electron hopping between DNA bases intrigues investigators to provide insights of the structrual properties of the DNA under varying relative humidity condition. Present manuscript attempts to provide insights for conductance of double stranded λ-DNA and its short stretch of intrinsic sequences in correspondence to structural distortion as a result of different relative humidity (RH) conditions

    DNA Immobilization Chemical Interference due to Aggregates Study by Dip and Drop Approach

    No full text
    In the present manuscript, we report the studies and observations for chemical interference due to aggregates formation during covalent immobilization of thiolated λ-DNA between gold microelectrodes. Dip and Drop approaches were employed to study DNA immobilization using thiolated oligos (oligoA 5′ GGGCGGCGACCT 3′ and oligoB 5′ AGGTCGCCGCCC 3′). As a result of aggregation, less interference was observed in Dip approach as compared to Drop approach. Atomic Force Microscopy (AFM) analysis of piranha treated gold surface revealed 47.5% increase in height roughness, contributing in interference by creating active sites. Cyclic voltammetry (CV) studies ascertain the multitude of adsorption states existing in long strand of DNA on surface. Surface coverage was found to be ∼ 72% (1.35 × 1010 molecules/cm2), and ∼ 42% (7.89 × 109 molecules/ cm2) in Dip and Drop approach, respectively. Dip approach can be used as a measure to minimize interference due to aggregation

    Covalent attachment of actin filaments to Tween 80 coated polystyrene beads for cargo transportation

    No full text
    In this manuscript, a new strategy has been reported for circumscribed covalent attachment of barbed and pointed ends of actin filaments to polystyrene beads. A comparative study of attachment of actin filaments to polystyrene beads was performed by blocking functionally active sites on polystyrene beads with nonionic detergents such as Tween 20, Tween 80 and polyethylene glycol (PEG). Effective blocking of active sites was obtained with Tween 80 at 0.1% concentration. Attachment of single bundle of actin filament to bead was assessed by rotational motion of bead tailed actin in front and lateral view. Velocity of actin filaments attached to different size of beads in in-vitro motility assay was calculated to ascertain their attachments. Velocity of actin attached to 1.0 and 3.0 microm polystyrene beads was reduced to 3.0-4.0 and 0.0-1.0 microm/s, respectively as compared to free actin velocity of 4.0-6.0 microm/s. Single point attachment of actin filaments to different size of beads was assessed by decrease in sliding velocity. Present study provides insight into the actin-myosin based molecular motor systems for drug delivery and biosensors applications
    corecore