97 research outputs found

    Extended Driving Impairs Nocturnal Driving Performances

    Get PDF
    Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3–5am, 1–5am and 9pm–5am) on open highway. Fourteen young healthy men (mean age [±SD] = 23.4 [±1.7] years) participated Inappropriate line crossings (ILC) in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3–5am) driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05) for the intermediate (1–5am) driving session and by 4.0 (CI, 1.7 to 9.4; P<.001) for the long (9pm–5am) driving session. Compared to the reference session (9–10pm), the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001), 15.4 (CI, 4.6 to 51.5; P<.001) and 24.3 (CI, 7.4 to 79.5; P<.001), respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05) and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01). At night, extended driving impairs driving performances and therefore should be limited

    Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction

    Get PDF
    Linking biological samples found at a crime scene with the actual crime event represents the most important aspect of forensic investigation, together with the identification of the sample donor. While DNA profiling is well established for donor identification, no reliable methods exist for timing forensic samples. Here, we provide for the first time a biochemical approach for determining deposition time of human traces. Using commercial enzyme-linked immunosorbent assays we showed that the characteristic 24-h profiles of two circadian hormones, melatonin (concentration peak at late night) and cortisol (peak in the morning) can be reproduced from small samples of whole blood and saliva. We further demonstrated by analyzing small stains dried and stored up to 4 weeks the in vitro stability of melatonin, whereas for cortisol a statistically significant decay with storage time was observed, although the hormone was still reliably detectable in 4-week-old samples. Finally, we showed that the total protein concentration, also assessed using a commercial assay, can be used for normalization of hormone signals in blood, but less so in saliva. Our data thus demonstrate that estimating normalized concentrations of melatonin and cortisol represents a prospective approach for determining deposition time of biological trace samples, at least from blood, with promising expectations for forensic applications. In the broader context, our study opens up a new field of circadian biomarkers for deposition timing of forensic traces; future studies using other circadian biomarkers may reveal if the time range offered by the two hormones studied here can be specified more exactly

    Early acquisition and high nasopharyngeal co-colonisation by Streptococcus pneumoniae and three respiratory pathogens amongst Gambian new-borns and infants

    Get PDF
    BACKGROUND: Although Haemophilus influenzae type b (Hib), Staphylococcus aureus and Moraxella catarrhalis are important causes of invasive and mucosal bacterial disease among children, co-carriage with Streptococcus pneumoniae during infancy has not been determined in West Africa. METHODS: Species specific PCR was applied to detect each microbe using purified genomic DNA from 498 nasopharyngeal (NP) swabs collected from 30 Gambian neonates every two weeks from 0 to 6 months and bi-monthly up to 12 months. RESULTS: All infants carried S. pneumoniae, H. influenzae and M. catarrhalis at several time points during infancy. S.pneumoniae co-colonized the infant nasopharynx with at least one other pathogen nine out of ten times. There was early colonization of the newborns and neonates, the average times to first detection were 5, 7, 3 and 14 weeks for S. pneumoniae, H. influenzae, M. catarrhalis and S. aureus respectively. The prevalence of S. pneumoniae, H. influenzae and M. catarrhalis increased among the neonates and exceeded 80% by 13, 15 and 23 weeks respectively. In contrast, the prevalence of S. aureus decreased from 50% among the newborns to 20% amongst nine-week old neonates. S. pneumoniae appeared to have a strong positive association with H. influenzae (OR 5.03; 95% CI 3.02, 8.39; p<0.01) and M. catarrhalis (OR 2.20; 95% CI 1.29; p<0.01) but it was negatively associated with S. aureus (OR 0.53; 95% CI 0.30, 0.94; p=0.03). CONCLUSION: This study shows early acquisition and high co-carriage of three important respiratory pathogens with S. pneumoniae in the nasopharyngeal mucosa among Gambian neonates and infants. This has important potential implications for the aetiology of respiratory polymicrobial infections, biofilm formation and vaccine strategies

    Circadian Disruption Accelerates Tumor Growth and Angio/Stromagenesis through a Wnt Signaling Pathway

    Get PDF
    Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway

    Acute Sleep Deprivation and Circadian Misalignment Associated with Transition onto the First Night of Work Impairs Visual Selective Attention

    Get PDF
    Background: Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift. Methodology/Principal Findings: To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05). Conclusions/Significance: These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work
    corecore