190 research outputs found

    The US stock market leads the Federal funds rate and Treasury bond yields

    Get PDF
    Using a recently introduced method to quantify the time varying lead-lag dependencies between pairs of economic time series (the thermal optimal path method), we test two fundamental tenets of the theory of fixed income: (i) the stock market variations and the yield changes should be anti-correlated; (ii) the change in central bank rates, as a proxy of the monetary policy of the central bank, should be a predictor of the future stock market direction. Using both monthly and weekly data, we found very similar lead-lag dependence between the S&P500 stock market index and the yields of bonds inside two groups: bond yields of short-term maturities (Federal funds rate (FFR), 3M, 6M, 1Y, 2Y, and 3Y) and bond yields of long-term maturities (5Y, 7Y, 10Y, and 20Y). In all cases, we observe the opposite of (i) and (ii). First, the stock market and yields move in the same direction. Second, the stock market leads the yields, including and especially the FFR. Moreover, we find that the short-term yields in the first group lead the long-term yields in the second group before the financial crisis that started mid-2007 and the inverse relationship holds afterwards. These results suggest that the Federal Reserve is increasingly mindful of the stock market behavior, seen at key to the recovery and health of the economy. Long-term investors seem also to have been more reactive and mindful of the signals provided by the financial stock markets than the Federal Reserve itself after the start of the financial crisis. The lead of the S&P500 stock market index over the bond yields of all maturities is confirmed by the traditional lagged cross-correlation analysis.Comment: 12 pages, 7 figures, 1 tabl

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Regulated Expression of CCL21 in the Prostate Tumor Microenvironment Inhibits Tumor Growth and Metastasis in an Orthotopic Model of Prostate Cancer

    Get PDF
    Currently there are no curative therapies available for patients with metastatic prostate cancer. Thus, novel therapies are needed to treat this patient population. Immunotherapy represents one promising approach for the elimination of occult metastatic tumors. However, the prostate tumor microenvironment (TME) represents a hostile environment capable of suppressing anti-tumor immunity and effector cell function. In view of this immunosuppressive activity, we engineered murine prostate cancer cells with regulated expression (tet-on) of CCL21. Prostate tumor cells implanted orthotopically produced primary prostate tumors with predictable metastatic disease in draining lymph nodes and distant organs. Expression of CCL21 in the prostate TME enhanced survival, inhibited tumor growth and decreased the frequency of local (draining lymph node) and distant metastasis. Therefore, these studies provide a strong rationale for further evaluation of CCL21 in tumor immunity and its use in cancer immunotherapy

    The Regulatory Gift: Politics, regulation and governance

    Get PDF
    Abstract: This article introduces the ‘regulatory gift’ as a conceptual framework for understanding a particular form of government-led deregulation that is presented as central to the public interest. Contra to theories of regulatory capture, government corruption, ‘insider’ personal interest or profit-seeking theories of regulation, the regulatory gift describes reform which is overtly designed by Government to reduce or reorient regulators’ functions to the advantage of the regulated and in line with market objectives on a potentially macro (rather than industry-specific) scale. As a conceptual framework, the regulatory gift is intended to be applicable across regulated sectors of democratic states and in this article the empirical sections evidence the practice of regulatory gifting in contemporary UK politics. Specifically, this article analyses the UK Public Bodies Act (2011), affecting some 900 regulatory public bodies and its correlative legislation, the Regulator’s Code (2014), the Deregulation Act (2015) and the Enterprise Bill (2016). The article concludes that whilst the regulatory gift may, in some cases, be aligned with the public interest - delivering on cost reduction, enhancing efficiency and stimulating innovation - this will not always be the case. As the case study of the regulatory body, the UK Human Fertilisation and Embryology Authority (HFEA) demonstrates, despite the explicit claims made by legislators, the regulatory gift has the potential to significantly undermine the public interest

    SIRT1 Undergoes Alternative Splicing in a Novel Auto-Regulatory Loop with p53

    Get PDF
    Background: The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. Methodology/Principal Findings: Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-DExon8. We show that SIRT1-DExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-DExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-DExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. Conclusions/Significance: We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed betwee

    Comparison of Human and Soil Candida tropicalis Isolates with Reduced Susceptibility to Fluconazole

    Get PDF
    Infections caused by treatment-resistant non-albicans Candida species, such as C. tropicalis, has increased, which is an emerging challenge in the management of fungal infections. Genetically related diploid sequence type (DST) strains of C. tropicalis exhibiting reduced susceptibility to fluconazole circulated widely in Taiwan. To identify the potential source of these wildly distributed DST strains, we investigated the possibility of the presence in soil of such C. tropicalis strains by pulsed field gel electrophoresis (PFGE) and DST typing methods. A total of 56 C. tropicalis isolates were recovered from 26 out of 477 soil samples. Among the 18 isolates with reduced susceptibility to fluconazole, 9 belonged to DST149 and 3 belonged to DST140. Both DSTs have been recovered from our previous studies on clinical isolates from the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) program. Furthermore, these isolates were more resistant to agricultural azoles. We have found genetically related C. tropicalis exhibiting reduced susceptibility to fluconazole from the human hosts and environmental samples. Therefore, to prevent patients from acquiring C. tropicalis with reduced susceptibility to azoles, prudent use of azoles in both clinical and agricultural settings is advocated

    Novel CCL21-Vault Nanocapsule Intratumoral Delivery Inhibits Lung Cancer Growth

    Get PDF
    Based on our preclinical findings, we are assessing the efficacy of intratumoral injection of dendritic cells (DC) transduced with an adenoviral vector expressing the secondary lymphoid chemokine (CCL21) gene (Ad-CCL21-DC) in a phase I trial in advanced non-small cell lung cancer (NSCLC). While this approach shows immune enhancement, the preparation of autologous DC for CCL21 genetic modification is cumbersome, expensive and time consuming. We are evaluating a non-DC based approach which utilizes vault nanoparticles for intratumoral CCL21 delivery to mediate antitumor activity in lung cancer.Here we describe that vault nanocapsule platform for CCL21 delivery elicits antitumor activity with inhibition of lung cancer growth. Vault nanocapsule packaged CCL21 (CCL21-vaults) demonstrated functional activity in chemotactic and antigen presenting activity assays. Recombinant vaults impacted chemotactic migration of T cells and this effect was predominantly CCL21 dependent as CCL21 neutralization abrogated the CCL21 mediated enhancement in chemotaxis. Intratumoral administration of CCL21-vaults in mice bearing lung cancer enhanced leukocytic infiltrates (CXCR3(+)T, CCR7(+)T, IFNγ(+)T lymphocytes, DEC205(+) DC), inhibited lung cancer tumor growth and reduced the frequencies of immune suppressive cells [myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), IL-10 T cells]. CCL21-vaults induced systemic antitumor responses by augmenting splenic T cell lytic activity against parental tumor cells.This study demonstrates that the vault nanocapsule can efficiently deliver CCL21 to sustain antitumor activity and inhibit lung cancer growth. The vault nanocapsule can serve as an "off the shelf" approach to deliver antitumor cytokines to treat a broad range of malignancies

    CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo

    Get PDF
    BACKGROUND:Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE:We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge

    No iron fertilization in the equatorial Pacific Ocean during the last ice age

    Get PDF
    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron1. Greater atmospheric dust deposition2 could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP) but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0–10,000 years ago) and the LGP (17,000–27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region7,8. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity

    Bayesian molecular clock dating of species divergences in the genomics era

    Get PDF
    It has been five decades since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics, to studying the macroevolutionary process of speciation and extinction, to estimating a timescale for Life on Earth
    corecore