121 research outputs found

    Hydrodynamical Simulations of the IGM at High Mach Numbers

    Get PDF
    We present a new approach to doing Eulerian computational fluid dynamics that is designed to work at high Mach numbers encountered in hydrodynamical simulations of the IGM. In conventional Eulerian CFD, the thermal energy is poorly tracked in supersonic bulk flows where local fluid variables cannot be accurately separated from the much larger bulk flow components. We described a method in which local fluid quantities can be directly tracked and the Eulerian fluid equations solved in a local frame moving with the flow. The new algorithm has been used to run large hydrodynamical simulations on a 1024^3 grid to study the kinetic SZ effect. The KSZ power spectrum is broadly peaked at l~10^4 with temperature fluctuations on micro Kelvin levels.Comment: 6 pages, to appear in the Proc. from the IGM/Galaxy Connection conferenc

    Formation of Galaxy Clusters

    Full text link
    In this review, we describe our current understanding of cluster formation: from the general picture of collapse from initial density fluctuations in an expanding Universe to detailed simulations of cluster formation including the effects of galaxy formation. We outline both the areas in which highly accurate predictions of theoretical models can be obtained and areas where predictions are uncertain due to uncertain physics of galaxy formation and feedback. The former includes the description of the structural properties of the dark matter halos hosting cluster, their mass function and clustering properties. Their study provides a foundation for cosmological applications of clusters and for testing the fundamental assumptions of the standard model of structure formation. The latter includes the description of the total gas and stellar fractions, the thermodynamical and non-thermal processes in the intracluster plasma. Their study serves as a testing ground for galaxy formation models and plasma physics. In this context, we identify a suitable radial range where the observed thermal properties of the intra-cluster plasma exhibit the most regular behavior and thus can be used to define robust observational proxies for the total cluster mass. We put particular emphasis on examining assumptions and limitations of the widely used self-similar model of clusters. Finally, we discuss the formation of clusters in non-standard cosmological models, such as non-Gaussian models for the initial density field and models with modified gravity, along with prospects for testing these alternative scenarios with large cluster surveys in the near future.Comment: 66 pages, 17 figures, review to be published in 2012 Annual Reviews of Astronomy & Astrophysic

    The Search for the Missing Baryons at Low Redshift

    Full text link
    At low redshift, only about one-tenth of the known baryons lie in galaxies or the hot gas seen in galaxy clusters and groups. Models posit that these "missing baryons" are in gaseous form in overdense filaments that connect the much denser virialized groups and clusters. About 30% are cool (<1E5 K) and are detected in Ly alpha absorption studies, but about half is predicted to lie in the 1E5-1E7 K regime. Gas is detected in the 2-5E5 K range through OVI absorption studies (7% of the baryons) and possibly near 1E5 K from broad Ly absorption (20% of the baryons). Hotter gas (0.5-2E6 K) is detected at zero redshift by OVII and OVIII K X-ray absorption, and the OVII line strengths seem to correlate with the Galactic soft X-ray background, so it is probably produced by Galactic Halo gas, rather than a Local Group medium. There are no compelling detections of the intergalactic hot gas (0.5-10E6 K) either in absorption or emission and these upper limits are consistent with theoretical models. Claimed X-ray absorption lines are not confirmed, while most of the claims of soft emission are attributable to artifacts of background subtraction and field-flattening. The missing baryons should become detectable with moderate improvements in instrumental sensitivity.Comment: To appear in Annual Review of Astronomy and Astrophysics, Vol 45 (Sept 2007) 44 pages, including 11 figure

    The Sunyaev-Zeldovich Effect and Its Cosmological Significance

    Get PDF
    Comptonization of the cosmic microwave background (CMB) radiation by hot gas in clusters of galaxies - the Sunyaev-Zeldovich (S-Z) effect - is of great astrophysical and cosmological significance. In recent years observations of the effect have improved tremendously; high signal-to-noise images of the effect (at low microwave frequencies) can now be obtained by ground-based interferometric arrays. In the near future, high frequency measurements of the effect will be made with bolomateric arrays during long duration balloon flights. Towards the end of the decade the PLANCK satellite will extensive S-Z surveys over a wide frequency range. Along with the improved observational capabilities, the theoretical description of the effect and its more precise use as a probe have been considerably advanced. I review the current status of theoretical and observational work on the effect, and the main results from its use as a cosmological probe.Comment: Invited review; in proceedings of the Erice NATO/ASI `Astrophysical Sources of High Energy Particles and Radiation'; 11 pages, 3 figure

    X-ray Properties of Black-Hole Binaries

    Get PDF
    We review the properties and behavior X-ray binaries that contain an accreting black hole. The larger majority of such systems are X-ray transients, and many of them were observed in daily pointings with RXTE throughout the course of their outbursts. The complex evolution of these sources is described in terms of common behavior patterns illustrated with comprehensive overview diagrams for six selected systems. Central to this comparison are three X-ray states of accretion, which are reviewed and defined quantitatively. Each state yields phenomena that arise in strong gravitational fields. We sketch a scenario for the potential impact of black hole observations on physics and discuss a current frontier topic: the measurement of black hole spin.Comment: 39 pages, 12 figures, ARAA, vol. 44, in pres

    Generalized Flows around Neutron Stars

    Full text link
    In this chapter, we present a brief and non-exhaustive review of the developments of theoretical models for accretion flows around neutron stars. A somewhat chronological summary of crucial observations and modelling of timing and spectral properties are given in sections 2 and 3. In section 4, we argue why and how the Two-Component Advective Flow (TCAF) solution can be applied to the cases of neutron stars when suitable modifications are made for the NSs. We showcase some of our findings from Monte Carlo and Smoothed Particle Hydrodynamic simulations which further strengthens the points raised in section 4. In summary, we remark on the possibility of future works using TCAF for both weakly magnetic and magnetic Neutron Stars.Comment: 15 pages, 7 figures. arXiv admin note: text overlap with arXiv:1901.0084

    The Cosmic Microwave Background and Particle Physics

    Get PDF
    In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc

    Millisecond Oscillations in X-Ray Binaries

    Get PDF
    The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations and kiloHertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin, and orbital motion closely around the neutron star and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and possibly related ones in black-hole candidates, and describe the attempts to use them to perform measurements of fundamental physical interest in these systems.Comment: 40 pages, 17 figures, 4 tables - submitted to the Annual Review of Astronomy and Astrophysics; to appear September 200

    Discrete sources as the origin of the Galactic X-ray ridge emission

    Full text link
    An unresolved X-ray glow (at energies above a few kiloelectronvolts) was discovered about 25 years ago and found to be coincident with the Galactic disk -the Galactic ridge X-ray emission. This emission has a spectrum characteristic of a 1e8 K optically thin thermal plasma, with a prominent iron emission line at 6.7 keV. The gravitational well of the Galactic disk, however, is far too shallow to confine such a hot interstellar medium; instead, it would flow away at a velocity of a few thousand kilometres per second, exceeding the speed of sound in gas. To replenish the energy losses requires a source of 10^{43} erg/s, exceeding by orders of magnitude all plausible energy sources in the Milky Way. An alternative is that the hot plasma is bound to a multitude of faint sources, which is supported by the recently observed similarities in the X-ray and near-infrared surface brightness distributions (the latter traces the Galactic stellar distribution). Here we report that at energies of 6-7 keV, more than 80 per cent of the seemingly diffuse X-ray emission is resolved into discrete sources, probably accreting white dwarfs and coronally active stars.Comment: 16 pages, 3 figures. Draft version of the paper that will appear in Nature, Issue April 30, 200

    The microwave background temperature at the redshift of 2.33771

    Full text link
    The Cosmic Microwave Background radiation is a fundamental prediction of Hot Big Bang cosmology. The temperature of its black-body spectrum has been measured at the present time, TCMBR,0T_{\rm CMBR,0} = 2.726±\pm 0.010 K, and is predicted to have been higher in the past. At earlier time, the temperature can be measured, in principle, using the excitation of atomic fine structure levels by the radiation field. All previous measurements however give only upper limits as they assume that no other significant source of excitation is present. Here we report the detection of absorption from the first {\sl and} second fine-structure levels of neutral carbon atoms in an isolated remote cloud at a redshift of 2.33771. In addition, the unusual detection of molecular hydrogen in several rotational levels and the presence of ionized carbon in its excited fine structure level make the absorption system unique to constrain, directly from observation, the different excitation processes at play. It is shown for the first time that the cosmic radiation was warmer in the past. We find 6.0 < T_{\rm CMBR} < 14 K at z = 2.33771 when 9.1 K is expected in the Hot Big Bang cosmology.Comment: 20 pages, 5 figures, accepted for publication in Nature, Press embargo until 1900 hrs London time (GMT) on 20 Dec 200
    • …
    corecore