49 research outputs found

    Carbon sequestration via wood burial

    Get PDF
    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink

    A Retrospective Cohort Study of the Potency of lipid-lowering therapy and Race-gender Differences in LDL cholesterol control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reasons for race and gender differences in controlling elevated low density lipoprotein (LDL) cholesterol may be related to variations in prescribed lipid-lowering therapy. We examined the effect of lipid-lowering drug treatment and potency on time until LDL control for black and white women and men with a baseline elevated LDL.</p> <p>Methods</p> <p>We studied 3,484 older hypertensive patients with dyslipidemia in 6 primary care practices over a 4-year timeframe. Potency of lipid-lowering drugs calculated for each treated day and summed to assess total potency for at least 6 and up to 24 months. Cox models of time to LDL control within two years and logistic regression models of control within 6 months by race-gender adjust for: demographics, clinical, health care delivery, primary/specialty care, LDL measurement, and drug potency.</p> <p>Results</p> <p>Time to LDL control decreased as lipid-lowering drug potency increased (P < 0.001). Black women (N = 1,440) received the highest potency therapy (P < 0.001) yet were less likely to achieve LDL control than white men (N = 717) (fully adjusted hazard ratio [HR] 0.66 [95% CI 0.56-0.78]). Black men (N = 666) and white women (N = 661) also had lower adjusted HRs of LDL control (0.82 [95% CI 0.69, 0.98] and 0.75 [95% CI 0.64-0.88], respectively) than white men. Logistic regression models of LDL control by 6 months and other sensitivity models affirmed these results.</p> <p>Conclusions</p> <p>Black women and, to a lesser extent, black men and white women were less likely to achieve LDL control than white men after accounting for lipid-lowering drug potency as well as diverse patient and provider factors. Future work should focus on the contributions of medication adherence and response to treatment to these clinically important differences.</p

    Combating the effects of climatic change on forests by mitigation strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions.</p> <p>Results</p> <p>We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES). We used the scenarios A1B (rapid and successful economic development) and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development). Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management.</p> <p>Conclusions</p> <p>The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.</p
    corecore