8 research outputs found

    Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

    No full text
    Cochlear implants operate within a bony channel of the cochlea, bathed in a fluid known as the perilymph. The perilymph is a complex fluid containing ions and proteins, which are known to actively interact with metallic electrodes. To improve our understanding of how cochlear implant performance varies in preclinical in vivo studies in comparison to human trials and patient outcomes, the protein composition (or perilymph proteome) is needed. Samples of perilymph were gathered from feline and Guinea pig subjects and analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) to produce proteomes and compare against the recently published human proteome. Over 64% of the proteins in the Guinea pig proteome were found to be common to the human proteome. The proportions of apolipoproteins, enzymes and immunoglobulins showed little variation between the two proteomes, with other classes showing similarity. This establishes a good basis for comparison of results. The results for the feline profile showed less similarity with the human proteome and would not provide a quality comparison. This work highlights the suitability of the Guinea pig to model the biological environment of the human cochlear and the need to carefully select models of the biological environment of a cochlear implant to more adequately translate in vitro and in vivo studies to the clinic

    Comparing perilymph proteomes across species

    Full text link
    Objectives/Hypothesis: Biological components of perilymph affect the electrical performance of cochlear implants. Understanding the perilymph composition of common animal models will improve the understanding of this impact and improve the interpretation of results from animal studies and how it relates to humans. Study Design: Analysis and comparison of the proteomes of human, guinea pig, and cat perilymph. Methods: Multiple perilymph samples from both guinea pigs and cats were analysed via liquid chromatography with tandem mass spectrometry. Proteins were identified using the Mascot database. Human data were obtained from a published dataset. Proteins identified were refined to form a proteome for each species. Results: Over 200 different proteins were found per species. There were 81, 39, and 64 proteins in the final human, guinea pig, and cat proteomes, respectively. Twenty-one proteins were common to all three species. Fifty-two percent of the cat proteome was found in the human proteome, and 31% of the guinea pig was common to human. The cat proteome had similar complexity to the human proteome in three protein classes, whereas the guinea pig had a similar complexity in two. The presence of albumin was significantly higher in human perilymph than in the other two species. Immunoglobulins were more abundant in the human than in the cat proteome. Conclusions: Perilymph proteomes were compared across three species. The degree of crossover of proteins of both guinea pig and cat with human indicate that these animals suitable models for the human cochlea, albeit the cat perilymph is a closer match. Level of Evidence: NA. Laryngoscope, 128:E47–E52, 2018

    Designer probiotics for prevention of enteric infections

    No full text
    © 2007 Nature Publishing GroupMany microbial pathogens, including those responsible for major enteric infections, exploit oligosaccharides that are displayed on the surface of host cells as receptors for toxins and adhesins. Blocking crucial ligand–receptor interactions is therefore a promising therapeutic strategy. One approach is to express molecular mimics of host receptors on the surface of harmless recombinant bacteria that can survive in the gut. These ‘designer probiotics’ bind bacterial toxins in the gut lumen with very high avidity, thereby preventing disease. This article discusses recent progress with this strategy.Adrienne W. Paton, Renato Morona and James C. Pato

    Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3'-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3'-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1 alpha oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts

    Phase and antigenic variation mediated by genome modifications

    No full text
    corecore