59 research outputs found
Hepatic P450 Enzyme Activity, Tissue Morphology and Histology of Mink (Mustela vison) Exposed to Polychlorinated Dibenzofurans
Dose- and time-dependent effects of environmentally relevant concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQ) of 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a mixture of these two congeners on hepatic P450 enzyme activity and tissue morphology, including jaw histology, of adult ranch mink were determined under controlled conditions. Adult female ranch mink were fed either TCDF (0.98, 3.8, or 20 ng TEQTCDF/kg bw/day) or PeCDF (0.62, 2.2, or 9.5 ng TEQPeCDF/kg bw/day), or a mixture of TCDF and PeCDF (4.1 ng TEQTCDF/kg bw/day and 2.8 ng TEQPeCDF/kg bw/day, respectively) for 180 days. Doses used in this study were approximately eight times greater than those reported in a parallel field study. Activities of the cytochrome P450 1A enzymes, ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) were significantly greater in livers of mink exposed to TCDF, PeCDF, and a mixture of the two congeners; however, there were no significant histological or morphological effects observed. It was determined that EROD and MROD activity can be used as sensitive biomarkers of exposure to PeCDF and TCDF in adult female mink; however, under the conditions of this study, the response of EROD/MROD induction occurred at doses that were less than those required to cause histological or morphological changes
Amphiregulin Mediates Estrogen, Progesterone, and EGFR Signaling in the Normal Rat Mammary Gland and in Hormone-Dependent Rat Mammary Cancers
Both estrogen (E) and progesterone (P) are implicated in the etiology of human breast cancer. Defining their mechanisms of action, particularly in vivo, is relevant to the prevention and therapy of breast cancer. We investigated the molecular and cellular mechanisms of E and/or P-induced in vivo proliferation, in the normal rat mammary gland and in hormone-dependent rat mammary cancers which share many characteristics with the normal human breast and hormone-dependent breast cancers. We show that E+P treatment induced significantly greater proliferation in both the normal gland and mammary cancers compared to E alone. In both the normal gland and tumors, E+P-induced proliferation was mediated through the increased production of amphiregulin (Areg), an epidermal growth factor receptor (EGFR) ligand, and the activation of intracellular signaling pathways (Erk, Akt, JNK) downstream of EGFR that regulate proliferation. In vitro experiments using rat primary mammary organoids or T47D breast cancer cells confirmed that Areg and the synthetic progestin, R5020, synergize to promote cell proliferation through EGFR signaling. Iressa, an EGFR inhibitor, effectively blocked this proliferation. These results indicate that mediators of cross talk between E, P, and EGFR pathways may be considered as relevant molecular targets for the therapy of hormone-dependent breast cancers, especially in premenopausal women
The rexinoid, bexarotene, prevents the development of premalignant lesions in MMTV-erbB2 mice
Retinoids, vitamin A analogues that bind to retinoic acid receptor (RAR) or retinoid X receptor (RXR), play important roles in regulating cell proliferation, apoptosis, and differentiation. Recently, RXR-selective ligands, also referred to as rexinoids, have been investigated as potential chemopreventive agents for breast cancer. Our previous studies demonstrated that the rexinoid bexarotene significantly prevented ER-negative mammary tumourigenesis with less toxicity than naturally occurring retinoids in animal models. To determine whether bexarotene prevents cancer at the early stages during the multistage process of mammary carcinogenesis, we treated MMTV-erbB2 mice with bexarotene for 2 or 4 months. The development of preinvasive mammary lesions such as hyperplasias and carcinoma-in-situ was significantly inhibited. This inhibition was associated with reduced proliferation, but no induction of apoptosis. We also examined the regulation of a number of rexinoid-modulated genes including critical growth and cell cycle regulating genes using breast cell lines and mammary gland samples from mice treated with rexinoids. We showed that two of these genes (DHRS3 and DEC2) were modulated by bexarotene both in vitro and in vivo. Identification of these rexinoid-modulated genes will help us understand the mechanism by which rexinoid prevents cancer. Such rexinoid-regulated genes also represent potential biomarkers to assess the response of rexinoid treatment in clinical trials
6-C-(E-phenylethenyl)-Naringenin Suppresses Colorectal Cancer Growth by Inhibiting Cyclooxygenase-1
Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors and COX-1 is now being reconsidered as a target for chemoprevention. Our aims were to determine whether selective COX-1 inhibition could delay or prevent cancer development and also clarify the underlying mechanisms. Data clearly showed that COX-1 was required for maintenance of malignant characteristics of colon cancer cells or tumor promoter-induced transformation of pre-neoplastic cells. We also successfully applied a ligand docking computational method to identify a novel selective COX-1 inhibitor, 6-C-(E-phenylethenyl)-naringenin (designated herein as 6CEPN). 6CEPN could bind to COX-1 and specifically inhibited its activity both in vitro and ex vivo. In colorectal cancer cells, it potently suppressed anchorage-independent growth by inhibiting COX-1 activity. 6CEPN also effectively suppressed tumor growth in a 28-day colon cancer xenograft model without any obvious systemic toxicity. Taken together, COX-1 plays a critical role in human colorectal carcinogenesis, and this specific COX-1 inhibitor merits further investigation as a potential preventive agent against colorectal cancer
Influence of FHIT on benzo[a]pyrene-induced tumors and alopecia in mice: Chemoprevention by budesonide and N-acetylcysteine
The FHIT gene has many hallmarks of a tumor-suppressor gene and is involved in a large variety of cancers. We treated A/J mice and (C57BL/6J × 129/SvJ)F1 (B6/129 F1) mice, either wild-type or FHIT +/-, with multiple doses of benzo[a]pyrene (B[a]P) by gavage. B[a]P caused a time-related increase of micronuclei in peripheral blood erythrocytes. Both A/J and B6/129 F1 mice, irrespective of their FHIT status, were sensitive to induction of forestomach tumors, whereas B[a]P induced glandular stomach hyperplasia and a high multiplicity of lung tumors in A/J mice only. Preneoplastic lesions of the uterus were more frequent in FHIT+/- mice. B6/129 F1 mice underwent spontaneous alopecia areata and hair bulb cell apoptosis, which were greatly accelerated either by FHIT heterozygosity or by B[a]P treatment, thus suggesting that FHIT plays a role in the pathogenesis of alopecia areata. The oral administration of either budesonide or N-acetyl-L-cysteine (NAC) inhibited the occurrence of this inflammatory skin disease. In addition, these agents prevented B[a]P-induced glandular stomach hyperplasia and decreased the size of both forestomach tumors and lung tumors in A/J mice. Budesonide also attenuated lung tumor multiplicity. In B6/129 F1 mice, NAC significantly decreased the proliferating cell nuclear antigen in lung tumors. Both budesonide and NAC inhibited B[a]P-induced forestomach tumors and preneoplastic lesions of the respiratory tract in B6/129 F1 mice. In conclusion, heterozygosity for FHIT affects susceptibility of mice to spontaneous alopecia areata and B[a]P-induced preneoplastic lesions of the uterus and does not alter responsiveness to budesonide and NAC. © 2006 by The National Academy of Sciences of the USA
Cpg Methylation In The Fhit Regulatory Region: Relation To Fhit Expression In Murine Tumors
To determine if: (1) 5' CpG island methylation is related to Fhit inactivation; (2) there are tumor or carcinogen-specific methylation patterns, we examined 35 CpG sites in the promoter, exon and intron 1 of the mouse Fhit gene. In primary tumors of lung, urinary bladder and tongue, induced by different carcinogens, 15-35% of sites were methylated, with specific methylation patterns associated with each cancer type, suggesting cancer- or tissue-specific methylation patterns. The methylation patterns were associated with reduced Fhit expression, as determined by immunohistochemical analyses. Methylation of rat Fhit 5' CpGs in mammary adenocarcinomas, detected by methylation specific PCR amplification, also correlated with reduced gene expression. Thus, there was an overall association between promoter/exon 1 methylation and decreased Fhit expression. In contrast, in cancer- derived cell lines 70-95% of the CpG sites were methylated. This is the first detailed study of the relationship between Fhit 5' CpG island methylation and Fhit expression in murine tumors, our main models for preclinical cancer studies, and provides evidence that loss of Fhit expression and methylation are correlated in these mouse models and these models will be useful to examine the complex relationships among gene expression, methylation patterns and organ specific city.WoSScopu
Stay vigilant: a glitazone (pioglitazone) can hide a glitazar!
International audienc
- …