179 research outputs found

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    Genetic properties of feed efficiency parameters in meat-type chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feed cost constitutes about 70% of the cost of raising broilers, but the efficiency of feed utilization has not kept up the growth potential of today's broilers. Improvement in feed efficiency would reduce the amount of feed required for growth, the production cost and the amount of nitrogenous waste. We studied residual feed intake (RFI) and feed conversion ratio (FCR) over two age periods to delineate their genetic inter-relationships.</p> <p>Methods</p> <p>We used an animal model combined with Gibb sampling to estimate genetic parameters in a pedigreed random mating broiler control population.</p> <p>Results</p> <p>Heritability of RFI and FCR was 0.42-0.45. Thus selection on RFI was expected to improve feed efficiency and subsequently reduce feed intake (FI). Whereas the genetic correlation between RFI and body weight gain (BWG) at days 28-35 was moderately positive, it was negligible at days 35-42. Therefore, the timing of selection for RFI will influence the expected response. Selection for improved RFI at days 28-35 will reduce FI, but also increase growth rate. However, selection for improved RFI at days 35-42 will reduce FI without any significant change in growth rate. The nature of the pleiotropic relationship between RFI and FCR may be dependent on age, and consequently the molecular factors that govern RFI and FCR may also depend on stage of development, or on the nature of resource allocation of FI above maintenance directed towards protein accretion and fat deposition. The insignificant genetic correlation between RFI and BWG at days 35-42 demonstrates the independence of RFI on the level of production, thereby making it possible to study the molecular, physiological and nutrient digestibility mechanisms underlying RFI without the confounding effects of growth. The heritability estimate of FCR was 0.49 and 0.41 for days 28-35 and days 35-42, respectively.</p> <p>Conclusion</p> <p>Selection for FCR will improve efficiency of feed utilization but because of the genetic dependence of FCR and its components, selection based on FCR will reduce FI and increase growth rate. However, the correlated responses in both FI and BWG cannot be predicted accurately because of the inherent problem of FCR being a ratio trait.</p

    Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus and Human Metapneumovirus

    Get PDF
    Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups

    Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma level of high-density lipoprotein-cholesterol (HDL-C), a heritable trait, is an important determinant of susceptibility to atherosclerosis. Non-synonymous and regulatory single nucleotide polymorphisms (SNPs) in genes implicated in HDL-C synthesis and metabolism are likely to influence plasma HDL-C, apolipoprotein A-I (apo A-I) levels and severity of coronary atherosclerosis.</p> <p>Methods</p> <p>We genotyped 784 unrelated Caucasian individuals from two sets of populations (Lipoprotein and Coronary Atherosclerosis Study- LCAS, N = 333 and TexGen, N = 451) for 94 SNPs in 42 candidate genes by 5' nuclease assays. We tested the distribution of the phenotypes by the Shapiro-Wilk normality test. We used Box-Cox regression to analyze associations of the non-normally distributed phenotypes (plasma HDL-C and apo A-I levels) with the genotypes. We included sex, age, body mass index (BMI), diabetes mellitus (DM), and cigarette smoking as covariates. We calculated the q values as indicators of the false positive discovery rate (FDR).</p> <p>Results</p> <p>Plasma HDL-C levels were associated with sex (higher in females), BMI (inversely), smoking (lower in smokers), DM (lower in those with DM) and SNPs in <it>APOA5, APOC2</it>, <it>CETP, LPL </it>and <it>LIPC </it>(each q ≤0.01). Likewise, plasma apo A-I levels, available in the LCAS subset, were associated with SNPs in <it>CETP</it>, <it>APOA5</it>, and <it>APOC2 </it>as well as with BMI, sex and age (all q values ≤0.03). The <it>APOA5 </it>variant S19W was also associated with minimal lumen diameter (MLD) of coronary atherosclerotic lesions, a quantitative index of severity of coronary atherosclerosis (q = 0.018); mean number of coronary artery occlusions (p = 0.034) at the baseline and progression of coronary atherosclerosis, as indicated by the loss of MLD.</p> <p>Conclusion</p> <p>Putatively functional variants of <it>APOA2</it>, <it>APOA5, APOC2</it>, <it>CETP, LPL</it>, <it>LIPC </it>and <it>SOAT2 </it>are independent genetic determinants of plasma HDL-C levels. The non-synonymous S19W SNP in <it>APOA5 </it>is also an independent determinant of plasma apo A-I level, severity of coronary atherosclerosis and its progression.</p

    Platelet-Associated CD40/CD154 Mediates Remote Tissue Damage after Mesenteric Ischemia/Reperfusion Injury

    Get PDF
    Several innate and adaptive immune cell types participate in ischemia/reperfusion induced tissue injury. Amongst them, platelets have received little attention as contributors in the process of tissue damage after ischemia reperfusion (I/R) injury. It is currently unknown whether platelets participate through the immunologically important molecules including, CD40 and when activated, CD154 (CD40L), in the pathogenesis of I/R injury. We hypothesized that constitutive expression of CD40 and activation-induced expression of CD154 on platelets mediate local mesenteric and remote lung tissue damage after I/R injury. Wild type (WT; C57BL/6J), CD40 and CD154 deficient mice underwent mesenteric ischemia for 30 minutes followed by reperfusion for 3 hours. WT mice subjected to mesenteric I/R injury displayed both local intestinal and remote lung damage. In contrast, there was significantly less intestinal damage and no remote lung injury in CD40 and CD154 deficient mice when compared to WT mice. Platelet-depleted WT mice transfused with platelets from CD40 or CD154 deficient mice failed to reconstitute remote lung damage. In contrast, when CD40 or CD154 deficient mice were transfused with WT platelets lung tissue damage was re-established. Together, these findings suggest that multiple mechanisms are involved in local and remote tissue injury and also identify platelet-expressed CD40 and/or CD154 as mediators of remote tissue damage

    Health status and quality of life among older adults in rural Tanzania

    Get PDF
    BACKGROUND\ud \ud Increasingly, human populations throughout the world are living longer and this trend is developing in sub-Saharan Africa. In developing African countries such as Tanzania, this demographic phenomenon is taking place against a background of poverty and poor health conditions. There has been limited research on how this process of ageing impacts upon the health of older people within such low-income settings.\ud \ud OBJECTIVE\ud \ud The objective of this study is to describe the impacts of ageing on the health status, quality of life and well-being of older people in a rural population of Tanzania.\ud \ud DESIGN\ud \ud A short version of the WHO Survey on Adult Health and Global Ageing questionnaire was used to collect information on the health status, quality of life and well-being of older adults living in Ifakara Health and Demographic Surveillance System, Tanzania, during early 2007. Questionnaires were administered through this framework to 8,206 people aged 50 and over.\ud \ud RESULTS\ud \ud Among people aged 50 and over, having good quality of life and health status was significantly associated with being male, married and not being among the oldest old. Functional ability assessment was associated with age, with people reporting more difficulty in performing routine activities as age increased, particularly among women. Reports of good quality of life and well-being decreased with increasing age. Women were significantly more likely to report poor quality of life (odds ratio 1.31; p<0.001, 95% CI 1.15-1.50).\ud \ud CONCLUSIONS\ud \ud Older people within this rural Tanzanian setting reported that the ageing process had significant impacts on their health status, quality of life and physical ability. Poor quality of life and well-being, and poor health status in older people were significantly associated with marital status, sex, age and level of education. The process of ageing in this setting is challenging and raises public health concerns

    RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    Get PDF
    BACKGROUND: The selective breeding of cattle with high-feed efficiencies (FE) is an important goal of beef and dairy cattle producers. Global gene expression patterns in relevant tissues can be used to study the functions of genes that are potentially involved in regulating FE. In the present study, high-throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. RESULTS: The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency. On average, 57 million reads (short reads or short mRNA sequences < ~200 bases) were sequenced, 52 million reads were mapped, and 24,616 known transcripts were quantified according to the bovine reference genome. A comparison of the high- and low-RFI groups revealed 70 and 19 significantly DEGs in Holstein and Jersey cows, respectively. The interaction analysis (high vs. low RFI x control vs. high concentrate diet) showed no interaction effects in the Holstein cows, while two genes showed interaction effects in the Jersey cows. The analyses showed that DEGs act through certain pathways to affect or regulate FE, including steroid hormone biosynthesis, retinol metabolism, starch and sucrose metabolism, ether lipid metabolism, arachidonic acid metabolism and drug metabolism cytochrome P450. CONCLUSION: We used RNA-Seq-based liver transcriptomic profiling of high- and low-RFI dairy cows in two breeds and identified significantly DEGs, their molecular mechanisms, their interactions with other genes and functional enrichments of different molecular pathways. The DEGs that were identified were the CYP’s and GIMAP genes for the Holstein and Jersey cows, respectively, which are related to the primary immunodeficiency pathway and play a major role in feed utilization and the metabolism of lipids, sugars and proteins. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-3622-9) contains supplementary material, which is available to authorized users

    Relapse prevention for addictive behaviors

    Get PDF
    The Relapse Prevention (RP) model has been a mainstay of addictions theory and treatment since its introduction three decades ago. This paper provides an overview and update of RP for addictive behaviors with a focus on developments over the last decade (2000-2010). Major treatment outcome studies and meta-analyses are summarized, as are selected empirical findings relevant to the tenets of the RP model. Notable advances in RP in the last decade include the introduction of a reformulated cognitive-behavioral model of relapse, the application of advanced statistical methods to model relapse in large randomized trials, and the development of mindfulness-based relapse prevention. We also review the emergent literature on genetic correlates of relapse following pharmacological and behavioral treatments. The continued influence of RP is evidenced by its integration in most cognitive-behavioral substance use interventions. However, the tendency to subsume RP within other treatment modalities has posed a barrier to systematic evaluation of the RP model. Overall, RP remains an influential cognitive-behavioral framework that can inform both theoretical and clinical approaches to understanding and facilitating behavior change

    The role of impulsivity in the aetiology of drug dependence: reward sensitivity versus automaticity

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © The Author(s) 2011.RATIONALE: Impulsivity has long been known as a risk factor for drug dependence, but the mechanisms underpinning this association are unclear. Impulsivity may confer hypersensitivity to drug reinforcement which establishes higher rates of instrumental drug-seeking and drug-taking behaviour, or may confer a propensity for automatic (non-intentional) control over drug-seeking/taking and thus intransigence to clinical intervention. METHOD: The current study sought to distinguish these two accounts by measuring Barratt Impulsivity and craving to smoke in 100 smokers prior to their completion of an instrumental concurrent choice task for tobacco (to measure the rate of drug-seeking) and an ad libitum smoking test (to measure the rate of drug-taking-number of puffs consumed). RESULTS: The results showed that impulsivity was not associated with higher rates of drug-seeking/taking, but individual differences in smoking uptake and craving were. Rather, nonplanning impulsivity moderated (decreased) the relationship between craving and drug-taking, but not drug-seeking. CONCLUSIONS: These data suggest that whereas the uptake of drug use is mediated by hypervaluation of the drug as an instrumental goal, the orthogonal trait nonplanning impulsivity confers a propensity for automatic control over well-practiced drug-taking behaviour.MR
    corecore