29 research outputs found
Recommended from our members
Calcitonin gene-related peptide immunoreactivity selectively labels accessory optic nuclei and pathways of the rat visual system.
The present study shows the distribution of calcitonin gene-related peptide (CGRP)-immunolabeled neuronal somata and fibers in the accessory optic system of adult rats. CGRP-immunoreactive cell bodies were small to medium-sized and mostly fusiform or oval-shaped. Both immunolabeled somata and fibers were found in the dorsal and lateral terminal nuclei as well as in the interstitial nucleus of the superior fasciculus (posterior fibers); whereas only immunoreactive fibers were found in the ventral division of the medial terminal nucleus, particularly its rostral portion. These results indicate that CGRP-containing neurons are present in all nuclear components of the accessory optic system and suggest that this neuropeptide may play a neuromodulative role in eye movements
Recommended from our members
Synaptic and neurochemical features of calcitonin gene-related peptide containing neurons in the rat accessory optic nuclei.
Within the rodent visual system, calcitonin gene-related peptide (CGRP) is selectively expressed in neurons in the accessory optic nuclei (AON), including the dorsal terminal nucleus (DTN), lateral terminal nucleus (LTN) and medial terminal nucleus (MTN). To determine whether CGRP-immunoreactive neurons are involved in visual circuitry, electron microscopic preparations were analyzed from normal rats and rats with optic nerve transections. A co-localization analysis was also made because CGRP-labeled neurons had features of GABAergic neurons. Thus, sections were prepared for light microscopy to determine whether CGRP-containing neurons also had glutamate decarboxylase (GAD) and other markers for GABAergic neurons, such as calcium binding proteins: calbindin (CB), calretinin (CR) and parvalbumin (PV). Electron microscopy of the DTN and LTN showed CGRP-labeled somata and dendrites that were postsynaptic to axon terminals forming asymmetric synapses. Many of these axon terminals degenerated following optic nerve transection indicating that retinal ganglion cells form synapses with CGRP-labeled neurons in the AON. In the DTN, LTN and MTN, CGRP-labeled axon terminals formed symmetric synapses with unlabeled somata as well as dendritic shafts and spines. Consistent with this type of synapse being GABAergic were the co-localization data showing that about 90% of the CGRP-labeled neurons co-localized GAD in the AON. Many CGRP-labeled neurons showed immunostaining for CR (40%) whereas only a few had labeling for CB (5%). No CGRP-labeled neurons had PV. These data show that CGRP-containing neurons receive direct retinal input and represent a subpopulation of GABAergic neurons which differentially co-express calcium-binding proteins
Recommended from our members
GABAergic neurons comprise a major cell type in rodent visual relay nuclei: an immunocytochemical study of pretectal and accessory optic nuclei.
The enzyme glutamic acid decarboxylase (GAD) has been localized in sections of rodent brains (gerbil, rat) using conventional immunocytochemical techniques. Our findings demonstrate that large numbers of GAD-positive neurons and axon terminals (puncta) are present in the visual relay nuclei of the pretectum and the accessory optic system. The areas of highest density of these neurons are in the nucleus of the optic tract (NOT) of the pretectum, the dorsal and lateral terminal accessory optic nuclei (DTN, LTN), the ventral and dorsal subdivisions of the medial terminal accessory optic nucleus (MTNv, MTNd), and the interstitial nucleus of the posterior fibers of the superior fasciculus (inSFp). The findings indicate that 27% of the NOT neurons are GAD-positive and that these neurons are distributed over all of the NOT except the most superficial portion of the NOT caudally. The GAD-positive neurons of the NOT are statistically smaller (65.9 microns2) than the total population of neurons of the NOT (84.3 microns2) but are otherwise indistinguishable in shape from the total neuron population. The other visual relay nuclei that have been analyzed (DTN, LTN, MTNv, MTNd, inSFp) are similar in that from 21% to 31% of their neurons are GAD-positive; these neurons are smaller in diameter and are more spherical than the total populations of neurons. The data further show that a large proportion of the neurons in these visual relay nuclei are contacted by GAD-positive axon terminals. It is estimated that approximately one-half of the neurons of the NOT and the terminal accessory optic nuclei receive a strong GABAergic input and have been called "GAD-recipient neurons". Further, the morphology of the GAD-positive neurons combined with their similar distribution to the GAD-recipient neurons suggest that many of these neurons are acting as GABAergic, local circuit neurons. On the other hand, the large number of GAD-positive neurons in the NOT and MTN (20-30%) in relation to estimates of projection neurons (75%) presents the possibility that some may in fact be projection neurons. The overall findings provide morphological evidence which supports the general conclusion that GABAergic neurons play a significant role in modulating the output of the visually related NOT and terminal accessory optic nuclei
Visuomotor Cerebellum in Human and Nonhuman Primates
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed
Molecular identification of a retinal cell type that responds to upward motion
The retina contains complex circuits of neurons that extract salient information from visual inputs. Signals from photoreceptors are processed by retinal interneurons, integrated by retinal ganglion cells (RGCs) and sent to the brain by RGC axons. Distinct types of RGC respond to different visual features, such as increases or decreases in light intensity (ON and OFF cells, respectively), colour or moving objects1, 2, 3, 4, 5. Thus, RGCs comprise a set of parallel pathways from the eye to the brain. The identification of molecular markers for RGC subsets will facilitate attempts to correlate their structure with their function, assess their synaptic inputs and targets, and study their diversification. Here we show, by means of a transgenic marking method, that junctional adhesion molecule B (JAM-B) marks a previously unrecognized class of OFF RGCs in mice. These cells have asymmetric dendritic arbors aligned in a dorsal-to-ventral direction across the retina. Their receptive fields are also asymmetric and respond selectively to stimuli moving in a soma-to-dendrite direction; because the lens reverses the image of the world on the retina, these cells detect upward motion in the visual field. Thus, JAM-B identifies a unique population of RGCs in which structure corresponds remarkably to function
Recommended from our members
Calcitonin gene-related peptide immunoreactivity selectively labels accessory optic nuclei and pathways of the rat visual system.
The present study shows the distribution of calcitonin gene-related peptide (CGRP)-immunolabeled neuronal somata and fibers in the accessory optic system of adult rats. CGRP-immunoreactive cell bodies were small to medium-sized and mostly fusiform or oval-shaped. Both immunolabeled somata and fibers were found in the dorsal and lateral terminal nuclei as well as in the interstitial nucleus of the superior fasciculus (posterior fibers); whereas only immunoreactive fibers were found in the ventral division of the medial terminal nucleus, particularly its rostral portion. These results indicate that CGRP-containing neurons are present in all nuclear components of the accessory optic system and suggest that this neuropeptide may play a neuromodulative role in eye movements
Recommended from our members
Synaptic and neurochemical features of calcitonin gene-related peptide containing neurons in the rat accessory optic nuclei.
Within the rodent visual system, calcitonin gene-related peptide (CGRP) is selectively expressed in neurons in the accessory optic nuclei (AON), including the dorsal terminal nucleus (DTN), lateral terminal nucleus (LTN) and medial terminal nucleus (MTN). To determine whether CGRP-immunoreactive neurons are involved in visual circuitry, electron microscopic preparations were analyzed from normal rats and rats with optic nerve transections. A co-localization analysis was also made because CGRP-labeled neurons had features of GABAergic neurons. Thus, sections were prepared for light microscopy to determine whether CGRP-containing neurons also had glutamate decarboxylase (GAD) and other markers for GABAergic neurons, such as calcium binding proteins: calbindin (CB), calretinin (CR) and parvalbumin (PV). Electron microscopy of the DTN and LTN showed CGRP-labeled somata and dendrites that were postsynaptic to axon terminals forming asymmetric synapses. Many of these axon terminals degenerated following optic nerve transection indicating that retinal ganglion cells form synapses with CGRP-labeled neurons in the AON. In the DTN, LTN and MTN, CGRP-labeled axon terminals formed symmetric synapses with unlabeled somata as well as dendritic shafts and spines. Consistent with this type of synapse being GABAergic were the co-localization data showing that about 90% of the CGRP-labeled neurons co-localized GAD in the AON. Many CGRP-labeled neurons showed immunostaining for CR (40%) whereas only a few had labeling for CB (5%). No CGRP-labeled neurons had PV. These data show that CGRP-containing neurons receive direct retinal input and represent a subpopulation of GABAergic neurons which differentially co-express calcium-binding proteins
Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey
The purpose of this study was to analyze the projections from visually related areas of the cerebral cortex of rhesus monkey to subcortical nuclei involved in eye-movement control; i.e., the pretectal nuclear complex, the terminal nuclei of the accessory optic system (AOS), and the superior colliculus (SC). The anterograde tracer H-3-leucine was pressure injected bilaterally into the cortex of six monkeys (for a total of 12 cases) involving the primary visual cortex (area 17); the medial prestriate cortex (medial 18/19); dorsomedial area 19; the caudal portion of the cortex of the superior temporal sulcus, upper bank (cytoarchitectural area OAa) and lower bank (area PGa); the lower bank of the caudal lateral intraparietal sulcus (area POa); and the inferior parietal lobule (area 7). The results revealed that the pretectal nucleus of the optic tract received inputs from medial prestriate cortex, dorsomedial part of area 19, OAa, and PGa. The posterior pretectal nucleus received sparse projections from area 7 and the cortex lining the intraparietal sulcus (dorsomedial part of area 19 and POa). The pretectal olivary nucleus was targeted by neurons in cortex of dorsomedial area 19, and the anterior pretectal nucleus was targeted by neurons in both dorsomedial 19 and area 7. The nuclei of the AOS (dorsal terminal; lateral terminal; and interstitial nuclei of the superior fasciculus, posterior and medial fibers) received projections exclusively from areas OAa and PGa. Furthermore, in one case with PGa injection, the medial terminal nucleus, dorsal portion, was also labeled. The visual cortical areas studied projected differentially upon the SC laminae. The primary visual area 17 projected only to the superficial laminae, i.e., stratum zonale (SZ), stratum griseum superficiale (SGS), and stratum opticum (SO). On the other hand, the medial portion of the prestriate cortex and caudal OAa and PGa targeted the superficial and intermediate laminae, i.e., SZ, SGS, SO, and stratum griseum intermediale (SGI), whereas caudal area POa projected primarily to the intermediate layer SGI. Rostral area 7 (mainly 7b) neurons terminated in the stratum album intermediale (SAI); no SC terminals were found in a case in which caudal area 7 (mainly 7a) was injected