52 research outputs found
Cortical Factor Feedback Model for Cellular Locomotion and Cytofission
Eukaryotic cells can move spontaneously without being guided by external
cues. For such spontaneous movements, a variety of different modes have been
observed, including the amoeboid-like locomotion with protrusion of multiple
pseudopods, the keratocyte-like locomotion with a widely spread lamellipodium,
cell division with two daughter cells crawling in opposite directions, and
fragmentations of a cell to multiple pieces. Mutagenesis studies have revealed
that cells exhibit these modes depending on which genes are deficient,
suggesting that seemingly different modes are the manifestation of a common
mechanism to regulate cell motion. In this paper, we propose a hypothesis that
the positive feedback mechanism working through the inhomogeneous distribution
of regulatory proteins underlies this variety of cell locomotion and
cytofission. In this hypothesis, a set of regulatory proteins, which we call
cortical factors, suppress actin polymerization. These suppressing factors are
diluted at the extending front and accumulated at the retracting rear of cell,
which establishes a cellular polarity and enhances the cell motility, leading
to the further accumulation of cortical factors at the rear. Stochastic
simulation of cell movement shows that the positive feedback mechanism of
cortical factors stabilizes or destabilizes modes of movement and determines
the cell migration pattern. The model predicts that the pattern is selected by
changing the rate of formation of the actin-filament network or the threshold
to initiate the network formation
Social Motility in African Trypanosomes
African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions
On Estimating Functional Gene Number in Eukaryotes
MANY recent studies have been concerned with the construction of biological model systems to describe adequately regulation of gene action during development of eukaryotes1–5. The number of genes in mammals and Drosophila has been suggested to be 1 to 2 orders of magnitude less than the amount of available DNA per haploid genome could provide2–7. Although Drosophila and mammalian nuclei contain enough unique DNA to specify for respectively 105 and 106 genes of 1,000 nucleotide pairs8,9, it has been argued that a much lower estimate of functional gene number is more reasonable2–7. Conversely, these conclusions indicate that more than 90% of the eukaryotic genome may be composed of nonfunctional or noninformational “junk” DNA. Here we demonstrate these estimations have not been fundamentally proven; rather they are based on simplifying assumptions of questionable validity, in some cases contradictory to experimental data
- …