13 research outputs found

    Refractive index in holographic superconductors

    Full text link
    With the probe limit, we investigate the behavior of the electric permittivity and effective magnetic permeability and related optical properties in the s-wave holographic superconductors. In particular, our result shows that unlike the strong coupled systems which admit a gravity dual of charged black holes in the bulk, the electric permittivity and effective magnetic permeability are unable to conspire to bring about the negative Depine-Lakhtakia index at low frequencies, which implies that the negative phase velocity does not appear in the holographic superconductors under such a situation.Comment: JHEP style, 1+15 pages, 11 figures, version to appear in JHE

    Negative Refractive Index in Hydrodynamical Systems

    Full text link
    We discuss the presence of exotic electromagnetic phenomena in systems with finite charge density which are described by hydrodynamics. We show that such systems generically have negative refractive index for low frequency electromagnetic waves, i.e. the energy flux and the phase velocity of the wave propagate in opposite directions. We comment on possible phenomenological applications, focusing on the Quark Gluon Plasma.Comment: 16 pages, 2 figure

    Negative Refraction and Superconductivity

    No full text
    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations. © SISSA 2011.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore