148 research outputs found
Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer
Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics
Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma.
There is growing evidence that antiangiogenic therapy stimulates cancer cell
invasion and metastasis. However, the underlying molecular mechanisms responsible
for these changes have not been fully defined. Here, we report that anti-VEGF
therapy promotes local invasion and metastasis by inducing collagen signaling in
cancer cells. We show that chronic VEGF inhibition in a genetically engineered
mouse model of pancreatic ductal adenocarcinoma (PDA) induces hypoxia, a less
differentiated mesenchymal-like tumor cell phenotype, TGF-beta expression, and
collagen deposition and signaling. In addition, we show that collagen signaling
is critical for protumorigenic activity of TGF-beta in vitro. To further model
the impact of collagen signaling in tumors, we evaluated PDA in mice lacking
Sparc, a protein that reduces collagen binding to cell surface receptors.
Importantly, we show that loss of Sparc increases collagen signaling and tumor
progression. Together, these findings suggest that collagen actively promotes PDA
spread and that enhanced disease progression associated with anti-VEGF therapy
can arise from elevated extracellular matrix-mediated signaling
Pleiotrophin drives a prometastatic immune niche in breast cancer.
Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer
Discoidin domain receptor 1 activity drives an aggressive phenotype in gastric carcinoma
BACKGROUND: Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that utilizes collagen as a ligand, is a key molecule in the progression of solid tumors as it regulates the interaction of cancer cells with the tumor stroma. However, the clinical relevance of DDR1 expression in gastric carcinoma is yet to be investigated. Here, we assessed the role of DDR1 in mediating the aggressive phenotype of gastric carcinoma and its potential as a therapeutic target.
METHODS: We conducted DDR1 immunohistochemistry using a tissue microarray of 202 gastric carcinoma specimens. We examined the effect of collagen-induced activation of DDR1 on cell signaling, tumorigenesis, and cell migration in gastric cancer cell lines, and tumor growth in a xenograft animal model of gastric cancer.
RESULTS: Our results showed that 50.5% of gastric cancer tissues are positive for DDR1 expression, and positive DDR1 expression was significantly correlated with a poor prognosis (P = 0.015). In a subgroup analysis, DDR1 expression was prognostically meaningful only in patients receiving adjuvant treatment (P = 0.013). We also demonstrated that collagen was able to activate DDR1 and increase the clonogenicity and migration of gastric cancer cells. We observed that a DDR1 inhibitor, 7rh benzamide, suppressed tumor growth in gastric cancer xenografts.
CONCLUSIONS: Our findings suggest a key role for DDR1 signaling in mediating the aggressive phenotype of gastric carcinoma. Importantly, inhibition of DDR1 is an attractive strategy for gastric carcinoma therapy
The Adnectin CT-322 is a novel VEGF receptor 2 inhibitor that decreases tumor burden in an orthotopic mouse model of pancreatic cancer
<p>Abstract</p> <p>Background</p> <p>Pancreatic cancer continues to have a 5-year survival of less than 5%. Therefore, more effective therapies are necessary to improve prognosis in this disease. Angiogenesis is required for tumor growth, and subsequently, mediators of angiogenesis are attractive targets for therapy. Vascular endothelial growth factor (VEGF) is a well-characterized mediator of tumor angiogenesis that functions primarily by binding and activating VEGF receptor 2 (VEGFR2). In this study, we evaluate the use of CT-322, a novel biologic (Adnectin). This small protein is based on a human fibronectin domain and has beneficial properties in that it is fully human, stable, and is produced in bacteria. CT-322 binds to and inhibits activation of VEGFR2.</p> <p>Methods</p> <p>The efficacy of CT-322 was evaluated <it>in vivo </it>using two orthotopic pancreatic tumor models. The first model was a human tumor xenograft where MiaPaCa-2 cells were injected into the tail of the pancreas of nude mice. The second model was a syngeneic tumor using Pan02 cells injected into pancreas of C57BL/6J mice. In both models, therapy was initiated once primary tumors were established. Mice bearing MiaPaCa-2 tumors were treated with vehicle or CT-322 alone. Gemcitabine alone or in combination with CT-322 was added to the treatment regimen of mice bearing Pan02 tumors. Therapy was given twice a week for six weeks, after which the animals were sacrificed and evaluated (grossly and histologically) for primary and metastatic tumor burden. Primary tumors were also evaluated by immunohistochemistry for the level of apoptosis (TUNEL), microvessel density (MECA-32), and VEGF-activated blood vessels (Gv39M).</p> <p>Results</p> <p>Treatment with CT-322 was effective at preventing pancreatic tumor growth and metastasis in orthotopic xenograft and syngeneic models of pancreatic cancer. Additionally, CT-322 treatment increased apoptosis, reduced microvessel density and reduced the number of VEGF-activated blood vessels in tumors. Finally, CT-322, in combination with gemcitabine was safe and effective at controlling the growth of syngeneic pancreatic tumors in immunocompetent mice.</p> <p>Conclusion</p> <p>We conclude that CT-322 is an effective anti-VEGFR2 agent and that further investigation of CT-322 for the treatment of pancreatic cancer is warranted.</p
r84, a Novel Therapeutic Antibody against Mouse and Human VEGF with Potent Anti-Tumor Activity and Limited Toxicity Induction
Vascular endothelial growth factor (VEGF) is critical for physiological and pathological angiogenesis. Within the tumor microenvironment, VEGF functions as an endothelial cell survival factor, permeability factor, mitogen, and chemotactic agent. The majority of these functions are mediated by VEGF-induced activation of VEGF receptor 2 (VEGFR2), a high affinity receptor tyrosine kinase expressed by endothelial cells and other cell types in the tumor microenvironment. VEGF can also ligate other cell surface receptors including VEGFR1 and neuropilin-1 and -2. However, the importance of VEGF-induced activation of these receptors in tumorigenesis is still unclear. We report the development and characterization of r84, a fully human monoclonal antibody that binds human and mouse VEGF and selectively blocks VEGF from interacting with VEGFR2 but does not interfere with VEGF∶VEGFR1 interaction. Selective blockade of VEGF binding to VEGFR2 by r84 is shown through ELISA, receptor binding assays, receptor activation assays, and cell-based functional assays. Furthermore, we show that r84 has potent anti-tumor activity and does not alter tissue histology or blood and urine chemistry after chronic high dose therapy in mice. In addition, chronic r84 therapy does not induce elevated blood pressure levels in some models. The ability of r84 to specifically block VEGF∶VEGFR2 binding provides a valuable tool for the characterization of VEGF receptor pathway activation during tumor progression and highlights the utility and safety of selective blockade of VEGF-induced VEGFR2 signaling in tumors
The role of MMP-9 in the anti-angiogenic effect of secreted protein acidic and rich in cysteine
GU81, a VEGFR2 antagonist peptoid, enhances the anti-tumor activity of doxorubicin in the murine MMTV-PyMT transgenic model of breast cancer
<p>Abstract</p> <p>Background</p> <p>Vascular endothelial growth factor (VEGF) is a primary stimulant of angiogenesis under physiological and pathological conditions. Anti-VEGF therapy is a clinically proven strategy for the treatment of a variety of cancers including colon, breast, lung, and renal cell carcinoma. Since VEGFR2 is the dominant angiogenic signaling receptor, it has become an important target in the development of novel anti-angiogenic therapies. We have reported previously the development of an antagonistic VEGFR2 peptoid (GU40C4) that has promising anti-angiogenic activity <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>In the current study, we utilize a derivative of GU40C4, termed GU81 in therapy studies. GU81 was tested alone or in combination with doxorubicin for <it>in vivo </it>efficacy in the MMTV-PyMT transgenic model of breast cancer.</p> <p>Results</p> <p>The derivative GU81 has increased <it>in vitro </it>efficacy compared to GU40C4. Single agent therapy (doxorubicin or GU81 alone) had no effect on tumor weight, histology, tumor fat content, or tumor growth index. However, GU81 is able to significantly to reduce total vascular area as a single agent. GU81 used in combination with doxorubicin significantly reduced tumor weight and growth index compared to all other treatment groups. Furthermore, treatment with combination therapy significantly arrested tumor progression at the premalignant stage, resulting in increased tumor fat content. Interestingly, treatment with GU81 alone increased tumor-VEGF levels and macrophage infiltration, an effect that was abrogated when used in combination with doxorubicin.</p> <p>Conclusion</p> <p>This study demonstrates the VEGFR2 antagonist peptoid, GU81, enhances the anti-tumor activity of doxorubicin in spontaneous murine MMTV-PyMT breast tumors.</p
Effects of Aging and Cyclosporin A on Collagen Turnover in Human Gingiva
BACKGROUND: WE AIMED AT CHARACTERIZING THE AGING GINGIVA ANALYZING: i) collagen content and turnover in human gingival tissues and fibroblasts obtained from healthy young and aging subjects. ii) the effect of cyclosporin A administration in human cultured gingival fibroblasts obtained from aging compared to young subjects.
METHODS: Morphological analysis was performed on haematoxylin-eosin and Sirius red stained paraffin-embedded gingival biopsies from young and aging healthy subjects. The expression of the main genes and proteins involved in collagen turnover were determined by real time PCR, dot blot and SDS-zymography on cultured young and aging gingival fibroblasts, and after cyclosporin A administration.
RESULTS: Our results suggest that in healthy aged people, gingival connective tissue is characterized by a similar collagen content and turnover. Collagen turnover pathways are similarly affected by cyclosporin A treatment in young and aging gingival fibroblasts.
CONCLUSIONS: Cyclosporin A administration affects gingival collagen turnover pathways in young and aging fibroblasts at the same extent, suggesting that during aging cyclosporin A administration is not related to relevant collagen turnover modifications
SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2′deoxycytidine to increase SPARC expression and improve therapy response
Poor clinical outcomes in cancer can often be attributed to inadequate response to chemotherapy. Strategies to overcome either primary or acquired chemoresistance may ultimately impact on patients' survival favourably. We previously showed that lower levels of SPARC were associated with therapy-refractory colorectal cancers (CRC), and that upregulating its expression enhances chemo-sensitivity resulting in greater tumour regression in vivo. Here, we examined aberrant hypermethylation of the SPARC promoter as a potential mechanism for repressing SPARC in CRCs and whether restoration of its expression with a demethylating agent 5-Aza-2′deoxycytidine (5-Aza) could enhance chemosensitivity. Initially, the methylation status of the SPARC promoter from primary human CRCs were assessed following isolation of genomic DNA from laser capture microdissected specimens by direct DNA sequencing. MIP101, RKO, HCT 116, and HT-29 CRC cell lines were also used to evaluate the effect of 5-Aza on: SPARC promoter methylation, SPARC expression, the interaction between DNMT1 and the SPARC promoter (ChIP assay), cell viability, apoptosis, and cell proliferation. Our results revealed global hypermethylation of the SPARC promoter in CRCs, and identified specific CpG sites that were consistently methylated in CRCs but not in normal colon. We also demonstrate that SPARC repression in CRC cell lines could be reversed following exposure to 5-Aza, which resulted in increased SPARC expression, leading to a significant reduction in cell viability (by an additional 39% in RKO cells) and greater apoptosis (an additional 18% in RKO cells), when combined with 5-FU in vitro (in comparison to 5-FU alone). Our exciting findings suggest potential diagnostic markers of CRCs based on specific methylated CpG sites. Moreover, the results reveal the therapeutic utility of employing demethylating agents to improve response through augmentation of SPARC expression
- …
