28 research outputs found

    The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli

    Get PDF
    Background: Escherichia coli is a model prokaryote, an important pathogen, and a key organism for industrial biotechnology. E. coli W (ATCC 9637), one of four strains designated as safe for laboratory purposes, has not been sequenced. E. coli W is a fast-growing strain and is the only safe strain that can utilize sucrose as a carbon source. Lifecycle analysis has demonstrated that sucrose from sugarcane is a preferred carbon source for industrial bioprocesses

    Studying the mechanism of membrane permeabilization induced by antimicrobial peptides using patch-clamp techniques

    No full text
    Many short peptides selectively permeabilize the bacteria plasma membrane, leading to their lyses and death: they are therefore a source of antibacterial molecules and inspiration for novel and more selective drugs, which may have wider application in many other fields, as selective anticancer drugs. In this chapter, it is presented a new method to investigate the permeabilization properties of antimicrobial peptides under strict physiological conditions, employing the patch-clamp technique coupled to a fast perfusion system

    Transformation of acinetobacter baumannii: Electroporation

    No full text
    Although the pan and the core genome of Acinetobacter baumannii and its essential genes are relatively well characterized, functional characterization of these genes has not paralleled the genome-level studies. However, recently developed genetic tools and optimized protocols are poised to accelerate genetic manipulation of A. baumannii. Transferring exogenous DNA into the cytosol of bacteria cells is a critical step in genetic characterizations. Conjugation is restricted to the transfer of DNA from one bacterial cell to another, and only a portion of A. baumannii clinical isolates are naturally competent. Electroporation, which is thought to transiently create aqueous pores in the membrane, is a preferred method in transferring exogenous DNA as it does not have such limitations. Several factors contribute to efficiency of electroporation and often need to be empirically optimized to maximize efficiency of this procedure. Here we provide an optimized electroporation protocol and guidance for electroporation of clinical MDR isolates of A. baumannii

    Short spatial and temporal scale patterns of fish assemblages in a subtropical rainforest mountain stream

    Get PDF
    The fish fauna of a subtropical mountain stream in Argentina was surveyed for the first time. The abundance and occurrence of species were explored considering variation in hydrology, seasonality and the abiotic environment. We collected 221 individuals of 23 species from 10 families and four orders. Small sized species and small individuals dominated the fish fauna. The small characid Astyanax saguazu was the most conspicuous species. Hydrology, seasonal changes in water temperature and variation in water conductivity affected the abundance and distribution of fish. Hypobrycon maromba is recorded in Argentina for the first time.Fil: Rosso, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Mabragaña, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Avigliano, Esteban. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Centro de Estudios Transdisciplinarios del Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schenone, Nahuel Francisco. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Centro de Estudios Transdisciplinarios del Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Diaz de Astarloa, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencia Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentin

    Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53

    No full text
    The scaffolding protein insulin receptor tyrosine kinase substrate p53 (IRSp53), a ubiquitous regulator of the actin cytoskeleton, mediates filopodia formation under the control of Rho-family GTPases. IRSp53 comprises a central SH3 domain, which binds to proline-rich regions of a wide range of actin regulators, and a conserved N-terminal IRSp53/MIM homology domain (IMD) that harbours F-actin-bundling activity. Here, we present the crystal structure of this novel actin-bundling domain revealing a coiled-coil domain that self-associates into a 180 Å-long zeppelin-shaped dimer. Sedimentation velocity experiments confirm the presence of a single molecular species of twice the molecular weight of the monomer in solution. Mutagenesis of conserved basic residues at the extreme ends of the dimer abrogated actin bundling in vitro and filopodia formation in vivo, demonstrating that IMD-mediated actin bundling is required for IRSp53-induced filopodia formation. This study promotes an expanded view of IRSp53 as an actin regulator that integrates scaffolding and effector functions
    corecore