1,106 research outputs found
On The Low Frequency Quasi Periodic Oscillations of X-ray Sources
Based on the interpretation of the twin kilohertz Quasi Periodic Oscillations
(kHz QPOs) of X-ray spectra of Low Mass X-Ray Binaries
(LMXBs) to the Keplerian and the periastron precession frequencies at the
magnetosphere-disk of X-ray neutron star (NS) respectively, we ascribe the low
frequency Quasi Periodic Oscillations (LFQPO) and HBO (15-60 Hz QPO for Z
sources or Atoll sources) to the periastron precession at some outer disk
radius.
The obtained conclusions include: all QPO frequencies increase with
increasing the accretion rate. The obtained theoretical relations between HBO
(LFQPO) frequency and the kHz QPO frequency are similar to the measured
empirical formula. Further, the possible dynamical mechanism for QPO production
is discussed.Comment: 6 pages, 2 figures, accepted by APSS, 200
Solitary wave solution to the generalized nonlinear Schrodinger equation for dispersive permittivity and permeability
We present a solitary wave solution of the generalized nonlinear Schrodinger
equation for dispersive permittivity and permeability using a scaling
transformation and coupled amplitude-phase formulation. We have considered the
third-order dispersion effect (TOD) into our model and show that soliton shift
may be suppressed in a negative index material by a judicious choice of the TOD
and self-steepening parameter.Comment: 6 page
Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma
Allergic asthma is characterized by chronic airway inflammation and hyperreactivity and is thought to be mediated by an adaptive T helper-2 (Th2) cell-type immune resp-onse. Here, we demonstrate that type 2 pulmonary innate lymphoid cells (ILC2s) significantly contribute to production of the key cytokines IL-5 and IL-13 in experimental asthma. In naive mice, lineage-marker negative ILC2s expressing IL-7Rα, CD25, Sca-1, and T1/ST2(IL-33R) were present in lungs and mediastinal lymph nodes (MedLNs), but not in broncho-alveolar lavage (BAL) fluid. Upon intranasal administration of IL-25 or IL-33, an asthma phenotype was induced, whereby ILC2s accumulated in lungs, MedLNs, and BAL fluid
Vibrational properties of amorphous silicon from tight-binding O(N) calculation
We present an O(N) algorithm to study the vibrational properties of amorphous
silicon within the framework of tight-binding approach. The dynamical matrix
elements have been evaluated numerically in the harmonic approximation
exploiting the short-range nature of the density matrix to calculate the
vibrational density of states which is then compared with the same obtained
from a standard O() algorithm. For the purpose of illustration, an
1000-atom model is studied to calculate the localization properties of the
vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references;
accepted in Phys. Rev.
Klein tunneling in graphene: optics with massless electrons
This article provides a pedagogical review on Klein tunneling in graphene,
i.e. the peculiar tunneling properties of two-dimensional massless Dirac
electrons. We consider two simple situations in detail: a massless Dirac
electron incident either on a potential step or on a potential barrier and use
elementary quantum wave mechanics to obtain the transmission probability. We
emphasize the connection to related phenomena in optics, such as the
Snell-Descartes law of refraction, total internal reflection, Fabry-P\'erot
resonances, negative refraction index materials (the so called meta-materials),
etc. We also stress that Klein tunneling is not a genuine quantum tunneling
effect as it does not necessarily involve passing through a classically
forbidden region via evanescent waves. A crucial role in Klein tunneling is
played by the conservation of (sublattice) pseudo-spin, which is discussed in
detail. A major consequence is the absence of backscattering at normal
incidence, of which we give a new shorten proof. The current experimental
status is also thoroughly reviewed. The appendix contains the discussion of a
one-dimensional toy model that clearly illustrates the difference in Klein
tunneling between mono- and bi-layer graphene.Comment: short review article, 18 pages, 14 figures; v3: references added,
several figures slightly modifie
Study of Effect on Teeth of Intermittent Fluoridation of a Community Water Supply
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67913/2/10.1177_00220345530320011601.pd
An analysis of the FIR/RADIO Continuum Correlation in the Small Magellanic Cloud
The local correlation between far-infrared (FIR) emission and radio-continuum
(RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales
from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc.
The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is
shown to be greatest in the most active star forming regions with a power law
slope of ~1.14 indicating that the RC emission increases faster than the FIR
emission. The slope of the other regions and the SMC are much flatter and in
the range of 0.63-0.85. The slopes tend to follow the thermal fractions of the
regions which range from 0.5 to 0.95. The thermal fraction of the RC emission
alone can provide the expected FIR/RC correlation. The results are consistent
with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray
electrons (CRe-s) diffusing away from the star forming regions. Since the CRe-s
appear to escape the SMC so readily, the results here may not provide support
for coupling between the local gas density and the magnetic field intensity.Comment: 19 pages, 7 Figure
- âŠ