24 research outputs found

    Revisiting consistency conditions for quantum states of systems on closed timelike curves: an epistemic perspective

    Full text link
    There has been considerable recent interest in the consequences of closed timelike curves (CTCs) for the dynamics of quantum mechanical systems. A vast majority of research into this area makes use of the dynamical equations developed by Deutsch, which were developed from a consistency condition that assumes that mixed quantum states uniquely describe the physical state of a system. We criticise this choice of consistency condition from an epistemic perspective, i.e., a perspective in which the quantum state represents a state of knowledge about a system. We demonstrate that directly applying Deutsch's condition when mixed states are treated as representing an observer's knowledge of a system can conceal time travel paradoxes from the observer, rather than resolving them. To shed further light on the appropriate dynamics for quantum systems traversing CTCs, we make use of a toy epistemic theory with a strictly classical ontology due to Spekkens and show that, in contrast to the results of Deutsch, many of the traditional paradoxical effects of time travel are present.Comment: 10 pages, 6 figures, comments welcome; v2 added references and clarified some points; v3 published versio

    Einstein, incompleteness, and the epistemic view of quantum states

    Get PDF
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. Indeed, representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, the failure of locality can be established through an argument considerably more straightforward than Bell's theorem. The historical significance of this result becomes evident when one recognizes that the same reasoning is present in Einstein's preferred argument for incompleteness, which dates back to 1935. This fact suggests that Einstein was seeking not just any completion of quantum theory, but one wherein quantum states are solely representative of our knowledge. Our hypothesis is supported by an analysis of Einstein's attempts to clarify his views on quantum theory and the circumstance of his otherwise puzzling abandonment of an even simpler argument for incompleteness from 1927.Comment: 18 pages, 8 figures, 1 recipe for cupcakes; comments welcom
    corecore