16 research outputs found

    Characterisation of ultra-thin platinum films by Xray line broadening analysis

    Full text link

    Line profile analysis of stacking faults and dislocations in DC magnetron sputtered gold films

    Full text link

    An in situ method for the study of strain broadening using synchrotron X-ray diffraction

    Get PDF
    A tensonometer for stretching metal foils has been constructed for the study of strain broadening in X-ray diffraction line profiles. This device, which is designed for use on powder diffractometers and was tested on Station 2.3 at Daresbury Laboratory, allows in situ measurements to be performed on samples under stress. It can be used for data collection in either transmission or reflection modes using either symmetric or asymmetric diffraction geometries. As a test case, measurements were carried out on an 18 µm-thick copper foil experiencing strain levels of up to 5% using both symmetric reflection and symmetric transmission diffraction. All the diffraction profiles displayed peak broadening and asymmetry which increased with strain. The measured profiles were analysed by the fundamental-parameters approach using the TOPAS peak-fitting software. All the observed broadened profiles were modelled by convoluting a refineable diffraction profile, representing the dislocation and crystallite size broadening, with a fixed instrumental profile predetermined using high-quality LaB6 reference powder. The deconvolution process yielded `pure\u27 sample integral breadths and asymmetry results which displayed a strong dependence on applied strain and increased almost linearly with applied strain. Assuming crystallite size broadening in combination with dislocation broadening arising from f.c.c. a/2〈110〉{111} dislocations, the variation of mechanical property with strain has been extracted. The observation of both peak asymmetry and broadening has been interpreted as a manifestation of a cellular structure with cell walls and cell interiors possessing high and low dislocation densities

    X-ray diffraction line broadening from thermally deposited gold films

    Full text link

    X-ray diffraction line broadening from gold and platinum thin films

    Full text link
    X-ray diffraction line profile analysis has been used to study the microstructure of (Ill) oriented gold and platinum thin films deposited by thermal evaporation and DC magnetron sputtering. In addition to crystallite size broadening, the profiles from these films displayed broadening arising from dislocations. A parallel investigation, using transmission electron microscopy (TEM) was undertaken to study the nature of dislocations formed, and to provide information on the dimensions of the crystallite columns in the films. X-ray data were collected at room temperature to determine the anisotropy of the broadening with (hkl), using a Siemens D5000 powder diffractometer (CuKa radiation) and two high-resolution synchrotron instruments (BM 16 at the ESRF [A=0.35A] and station 2.3 at the Daresbury laboratory. Two approaches to instrument deconvolution were investigated; Fourier deconvolution and fundamental parameters profile fitting, using Lab6 as a reference material to determine the instrument profile function. After removal of the crystallite size broadening contribution from the measured integral breadths, the residual microstrain broadening was modelled assuming dislocations based on a FCC a/2<110>{ Ill} slip system. The results of the X-ray analysis agreed with dark field TEM micrographs, which showed that many of the crystallites contained dislocations of mixed character (screw- edge)

    In-situ studies of X-ray diffraction line profiles from strained copper foils

    Full text link
    The development of an in-situ tensometer is described along with preliminary results of x-ray line profiles from copper foils under tensile stress. The tensometer was designed and constructed on the high resolution diffraction instrument, Station 2.3 at the synchrotron radiation source (SRS) Daresbury Laboratory, and is capable of collecting data in either symmetric or asymmetric geometry including transmission and reflection modes. Experiments were carried out using 18 J..Lm thick copper foil up to strain levels of 5 % using both symmetric reflection and symmetric transmission diffraction. All profiles displayed diffraction broadening and asymmetry which increased with strain. In addition, the asymmetry observed in symmetric transmission was associated with extended tails on the low angle side of the profiles, but in symmetric reflection data the opposite asymmetry was observed. In the analysis, the measured profiles were fitted using the software TOPAS, a fundamental parameters approach to profile fitting. The instrumental profile function was characterised and modelled using annealed LaB6 powder. The diffraction broadening was then determined by refining the convolution of a Voigt function, an asymmetric exponential function and a fixed instrument function to reproduce the observed broadened profiles. The integral breadth and asymmetry results display a strong order dependence and increase almost linearly with strain. The results were interpreted by assuming crystallite size broadening in combination with dislocation broadening arising from fcc a/2( 110) {Ill } dislocations

    First principles evaluation of the dislocation contrast factors for FCC and BCC materials

    Full text link
    corecore