15 research outputs found

    Neutron charge form factor at large q2q^2

    Full text link
    The neutron charge form factor GEn(q)G_{En}(q) is determined from an analysis of the deuteron quadrupole form factor FC2F_{C2} data. Recent calculations, based on a variety of different model interactions and currents, indicate that the contributions associated with the uncertain two-body operators of shorter range are relatively small for FC2F_{C2}, even at large momentum transfer qq. Hence, GEn(q)G_{En}(q) can be extracted from FC2F_{C2} at large q2q^2 without undue systematic uncertainties from theory.Comment: 8 pages, 3 figure

    An accurate nucleon-nucleon potential with charge-independence breaking

    Full text link
    We present a new high-quality nucleon-nucleon potential with explicit charge dependence and charge asymmetry, which we designate Argonne v18v_{18}. The model has a charge-independent part with fourteen operator components that is an updated version of the Argonne v14v_{14} potential. Three additional charge-dependent and one charge-asymmetric operators are added, along with a complete electromagnetic interaction. The potential has been fit directly to the Nijmegen pppp and npnp scattering data base, low-energy nnnn scattering parameters, and deuteron binding energy. With 40 adjustable parameters it gives a χ2\chi^{2} per datum of 1.09 for 4301 pppp and npnp data in the range 0--350 MeV.Comment: 36 pages, PHY-7742-TH-9

    Elastic electron deuteron scattering

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1016/0370-2693(73)90622-9Measurements of the ratio of the deuteron to proton eiectric form factors were made for low q. The rms radius of the deuteron structure fuctor was found to be 1.9635 plus or minus 0.0045 fm, yielding an rms charge radius of 2.095 plus or minus 0.006 fm. (auth)USDO
    corecore