30 research outputs found
Measurement error in a multi-level analysis of air pollution and health: A simulation study
Background: Spatiooral models are increasingly being used to predict exposure to ambient outdoor air pollution at high spatial resolution for inclusion in epidemiological analyses of air pollution and health. Measurement error in these predictions can nevertheless have impacts on health effect estimation. Using statistical simulation we aim to investigate the effects of such error within a multi-level model analysis of long and short-term pollutant exposure and health. Methods: Our study was based on a theoretical sample of 1000 geographical sites within Greater London. Simulations of "true" site-specific daily mean and 5-year mean NO2 and PM10 concentrations, incorporating both temporal variation and spatial covariance, were informed by an analysis of daily measurements over the period 2009-2013 from fixed location urban background monitors in the London area. In the context of a multi-level single-pollutant Poisson regression analysis of mortality, we investigated scenarios in which we specified: the Pearson correlation between modelled and "true" data and the ratio of their variances (model versus "true") and assumed these parameters were the same spatially and temporally. Results: In general, health effect estimates associated with both long and short-term exposure were biased towards the null with the level of bias increasing to over 60% as the correlation coefficient decreased from 0.9 to 0.5 and the variance ratio increased from 0.5 to 2. However, for a combination of high correlation (0.9) and small variance ratio (0.5) non-trivial bias (> 25%) away from the null was observed. Standard errors of health effect estimates, though unaffected by changes in the correlation coefficient, appeared to be attenuated for variance ratios > 1 but inflated for variance ratios < 1. Conclusion: While our findings suggest that in most cases modelling errors result in attenuation of the effect estimate towards the null, in some situations a non-trivial bias away from the null may occur. The magnitude and direction of bias appears to depend on the relationship between modelled and "true" data in terms of their correlation and the ratio of their variances. These factors should be taken into account when assessing the validity of modelled air pollution predictions for use in complex epidemiological models. © 2019 The Author(s)
Comparing the performance of air pollution models for nitrogen dioxide and ozone in the context of a multilevel epidemiological analysis
Background: Using modeled air pollutant predictions as exposure variables in epidemiological analyses can produce bias in health effect estimation. We used statistical simulation to estimate these biases and compare different air pollution models for London. Methods: Our simulations were based on a sample of 1,000 small geographical areas within London, United Kingdom. "True" pollutant data (daily mean nitrogen dioxide [NO2] and ozone [O3]) were simulated to include spatio-temporal variation and spatial covariance. All-cause mortality and cardiovascular hospital admissions were simulated from "true" pollution data using prespecified effect parameters for short and long-term exposure within a multilevel Poisson model. We compared: land use regression (LUR) models, dispersion models, LUR models including dispersion output as a spline (hybrid1), and generalized additive models combining splines in LUR and dispersion outputs (hybrid2). Validation datasets (model versus fixed-site monitor) were used to define simulation scenarios. Results: For the LUR models, bias estimates ranged from -56% to +7% for short-term exposure and -98% to -68% for long-term exposure and for the dispersion models from -33% to -15% and -52% to +0.5%, respectively. Hybrid1 provided little if any additional benefit, but hybrid2 appeared optimal in terms of bias estimates for short-term (-17% to +11%) and long-term (-28% to +11%) exposure and in preserving coverage probability and statistical power. Conclusions: Although exposure error can produce substantial negative bias (i.e., towards the null), combining outputs from different air pollution modeling approaches may reduce bias in health effect estimation leading to improved impact evaluation of abatement policies. © 2020 Wolters Kluwer Health. All rights reserved
The impact of measurement error in modeled ambient particles exposures on health effect estimates in multilevel analysis: A simulation study
Background: Various spatiotemporal models have been proposed for predicting ambient particulate exposure for inclusion in epidemiological analyses. We investigated the effect of measurement error in the prediction of particulate matter with diameter <10 µm (PM10) and <2.5 µm (PM2.5) concentrations on the estimation of health effects. Methods: We sampled 1,000 small administrative areas in London, United Kingdom, and simulated the "true" underlying daily exposure surfaces for PM10and PM2.5for 2009-2013 incorporating temporal variation and spatial covariance informed by the extensive London monitoring network. We added measurement error assessed by comparing measurements at fixed sites and predictions from spatiotemporal land-use regression (LUR) models; dispersion models; models using satellite data and applying machine learning algorithms; and combinations of these methods through generalized additive models. Two health outcomes were simulated to assess whether the bias varies with the effect size. We applied multilevel Poisson regression to simultaneously model the effect of long- and short-term pollutant exposure. For each scenario, we ran 1,000 simulations to assess measurement error impact on health effect estimation. Results: For long-term exposure to particles, we observed bias toward the null, except for traffic PM2.5for which only LUR underestimated the effect. For short-term exposure, results were variable between exposure models and bias ranged from -11% (underestimate) to 20% (overestimate) for PM10and of -20% to 17% for PM2.5. Integration of models performed best in almost all cases. Conclusions: No single exposure model performed optimally across scenarios. In most cases, measurement error resulted in attenuation of the effect estimate. © 2020 Wolters Kluwer Health. All rights reserved