11 research outputs found

    Correlation Entropy of an Interacting Quantum Field and H-theorem for the O(N) Model

    Full text link
    Following the paradigm of Boltzmann-BBGKY we propose a correlation entropy (of the nth order) for an interacting quantum field, obtained by `slaving' (truncation with causal factorization) of the higher (n+1 th) order correlation functions in the Schwinger-Dyson system of equations. This renders an otherwise closed system effectively open where dissipation arises. The concept of correlation entropy is useful for addressing issues related to thermalization. As a small yet important step in that direction we prove an H-theorem for the correlation entropy of a quantum mechanical O(N) model with a Closed Time Path Two Particle Irreducible Effective Action at the level of Next-to-Leading-Order large N approximation. This model may be regarded as a field theory in 00 space dimensions.Comment: 22 page

    Structure, Molecular Organization, and Biosynthesis of Membranes of Purple Bacteria

    No full text

    The Components of Plant Tissue Culture Media II: Organic Additions, Osmotic and pH Effects, and Support Systems

    No full text
    corecore