22 research outputs found

    High-Throughput Measurements of Hydrogel Tissue Construct Mechanics

    No full text
    Engineered tissues represent a natural environment for studying cell physiology, mechanics, and function. Cellular interactions with the extracellular matrix proteins are important determinants of cell physiology and tissue mechanics. Dysregulation of these parameters can result in diseases such as cardiac fibrosis and atherosclerosis. In this report we present a novel system to produce hydrogel tissue constructs (HTCs) and to characterize their mechanical properties. HTCs are grown in custom chambers and a robotic system is used to indent them and measure the resulting forces. Force measurements are then used to estimate HTC pretension (cellular contractility). Pretension was reduced in a dose-dependent manner by cytochalasin D (CD) treatment; the highest concentration (2 μM) resulted in ∼10-fold decrease. On the other hand, treatment with fetal bovine serum (20%) resulted in approximately threefold increase in pretension. Excellent repeatability and precision were observed in measurements from replicate HTCs. The coefficient of statistical variance of quantified pretension ranged from 7% to 15% (n = 4). Due to the small size (4 × 4 × 0.8 mm) of the HTCs, this system of profiling HTC mechanics can readily be used in high-throughput applications. In particular, it can be used for screening chemical libraries in search of drugs that can alter tissue mechanics

    Passive strain-induced matrix synthesis and organization in shape-specific, cartilaginous neotissues

    No full text
    Tissue-engineered musculoskeletal soft tissues typically lack the appropriate mechanical robustness of their native counterparts, hindering their clinical applicability. With structure and function being intimately linked, efforts to capture the anatomical shape and matrix organization of native tissues are imperative to engineer functionally robust and anisotropic tissues capable of withstanding the biomechanically complex in vivo joint environment. The present study sought to tailor the use of passive axial compressive loading to drive matrix synthesis and reorganization within self-assembled, shape-specific fibrocartilaginous constructs, with the goal of developing functionally anisotropic neotissues. Specifically, shape-specific fibrocartilaginous neotissues were subjected to 0, 0.01, 0.05, or 0.1N axial loads early during tissue culture. Results found the 0.1-N load to significantly increase both collagen and glycosaminoglycan synthesis by 27% and 67%, respectively, and to concurrently reorganize the matrix by promoting greater matrix alignment, compaction, and collagen crosslinking compared with all other loading levels. These structural enhancements translated into improved functional properties, with the 0.1-N load significantly increasing both the relaxation modulus and Young's modulus by 96% and 255%, respectively, over controls. Finite element analysis further revealed the 0.1-N uniaxial load to induce multiaxial tensile and compressive strain gradients within the shape-specific neotissues, with maxima of 10.1%, 18.3%, and-21.8% in the XX-, YY-, and ZZ-directions, respectively. This indicates that strains created in different directions in response to a single axis load drove the observed anisotropic functional properties. Together, results of this study suggest that strain thresholds exist within each axis to promote matrix synthesis, alignment, and compaction within the shape-specific neotissues. Tailoring of passive axial loading, thus, presents as a simple, yet effective way to drive in vitro matrix development in shape-specific neotissues toward more closely achieving native structural and functional properties. © 2014 Mary Ann Liebert, Inc

    Transport equations and indices for random and biased cell migration based on single cell properties

    No full text
    A mathematical modeling and analysis framework is presented to predict quantitative indices for random and biased cell migration based on mechanistic parameters describing the receptor-mediated motility of an individual cell. A general set of stochastic differential equations is derived to model cell movement on the time scale of the molecular processes that govern cell locomotion. Then, by adiabatic elimination of the fast variables with projector operator formalism, we derive approximate Fokker-Planck equations for the resultant cell movement on longer time scales. Analysis of these FPE's provides expressions for statistical indices that are commonly used to characterize cell movement, such as root-mean-squared cell speed, directional persistance time, mean-squared displacement, random motility coefficient, and drift velocity, in terms of the mechanistic parameters. As specific examples, we apply this approach to adhesion-mediated directed cell migration (haptotaxis), and chemoattractant-mediated directd cell migration (chemotaxis). (orig)Available from TIB Hannover: RO 5389(381) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore